-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSB3SPM.py
45 lines (36 loc) · 1.46 KB
/
SB3SPM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import gym
from datetime import datetime
from stable_baselines3 import PPO
start_time = datetime.now().replace(microsecond=0)
log_dir = "runs/stable_baseline/unitdemand/SPMs"+str(start_time)
env = gym.make('SPMsEnv-v0')
from stable_baselines3.common.callbacks import BaseCallback
class TensorboardCallback(BaseCallback):
"""
Custom callback for plotting additional values in tensorboard.
"""
def __init__(self, verbose=0):
super(TensorboardCallback, self).__init__(verbose)
def _on_step(self) -> bool:
# Log scalar value (here a random variable)
price1 = env.record_price[0]
price2 = env.record_price[1]
price3 = env.record_price[2]
price4 = env.record_price[3]
price5 = env.record_price[4]
self.logger.record('Prices/item pirce1', price1)
self.logger.record('Prices/item pirce2', price2)
self.logger.record('Prices/item pirce3', price3)
self.logger.record('Prices/item pirce4', price4)
self.logger.record('Prices/item pirce5', price5)
return True
model = PPO('MlpPolicy', env, verbose=1,tensorboard_log=log_dir)
model.learn(total_timesteps=1e6,callback=TensorboardCallback())
obs = env.reset()
for i in range(100):
action, _state = model.predict(obs, deterministic=False)
obs, reward, done, info = env.step(action)
if done:
socialwelfare = env.socialwelfare
print("Episode:",i,"Socialwelfare:",socialwelfare)
obs = env.reset()