-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_string_improved.jags
47 lines (39 loc) · 1.99 KB
/
model_string_improved.jags
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
model {
for (i in 1:N) {
# Linear predictor with logit transformation
logit[i] <- beta[1] +
beta[2] * log(1 + abs(Below_Poverty[i])) +
beta[3] * Illegitimate_Births[i] +
beta[4] * Large_Families[i] +
beta[5] * Inc_from_inv[i] +
beta[6] * log(1 + abs(Median_Income[i])) +
beta[7] * Families_2Parents[i] +
beta[8] * Teen_2Par[i] +
beta[9] * Working_mom[i] +
beta[10] * Welfare_Public_Assist[i] +
# Interaction terms
beta[11] * Illegitimate_Births[i] * Welfare_Public_Assist[i] +
beta[12] * log(1 + abs(Median_Income[i])) * log(1 + abs(Below_Poverty[i])) +
beta[13] * Large_Families[i] * log(1 + abs(Below_Poverty[i])) +
beta[14] * Welfare_Public_Assist[i] * log(1 + abs(Below_Poverty[i])) +
beta[15] * Teen_2Par[i] * log(1 + abs(Below_Poverty[i])) +
state_effect[State[i]] # Random effect for state
# Compute mu[i] from the logit transformation
mu[i] <- max(1e-5, min(exp(logit[i]) / (1 + exp(logit[i])), 1 - 1e-5)) # Bound mu[i]
# Beta distribution for the response variable
bc_target_bayes[i] ~ dbeta(mu[i] * max(phi[i], 1e-3), (1 - mu[i]) * max(phi[i], 1e-3)) # Clamp phi[i] to avoid small values
# Prior for phi[i] - gamma distribution for each observation
phi[i] ~ dgamma(1, 0.01) # Adjusted gamma prior to avoid extremely small values
}
# Priors for coefficients with regularization
for (j in 1:15) {
beta[j] ~ dnorm(0, 0.1) # Regularized prior for the fixed effects
}
# Random effects for states
for (s in 1:S) {
state_effect[s] ~ dnorm(0, tau_state) # Random effect for states
}
# Hyperparameters for random effects
sd_state ~ dgamma(1, 1) # Gamma prior for sd_state to ensure positivity
tau_state <- pow(sd_state, -2) # Convert to precision
}