forked from KlugerLab/FIt-SNE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
fast_tsne.m
328 lines (292 loc) · 13.7 KB
/
fast_tsne.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
function [mappedX, costs, initialError] = fast_tsne(X, opts)
%FAST_TSNE Runs the C++ implementation of FMM t-SNE
%
% mappedX = fast_tsne(X, opts, initial_data)
% X - Input dataset, rows are observations and columns are
% variables
% opts - a struct with the following possible parameters
% opts.no_dims - dimensionality of the embedding
% Default 2.
% opts.perplexity - perplexity is used to determine the
% bandwidth of the Gaussian kernel in the input
% space. Default 30.
% opts.theta - Set to 0 for exact. If non-zero, then will use either
% Barnes Hut or FIt-SNE based on opts.nbody_algo. If Barnes Hut, then
% this determins the accuracy of BH approximation.
% Default 0.5.
% opts.max_iter - Number of iterations of t-SNE to run.
% Default 750.
% opts.nbody_algo - if theta is nonzero, this determins whether to
% use FIt-SNE or Barnes Hut approximation. Default is FIt-SNE.
% set to be 'bh' for Barnes Hut
% opts.knn_algo - use vp-trees (as in bhtsne) or approximate nearest neighbors (default).
% set to be 'vptree' for vp-trees
% opts.early_exag_coeff - coefficient for early exaggeration
% (>1). Default 12.
% opts.stop_early_exag_iter - When to switch off early
% exaggeration.
% Default 250.
% opts.start_late_exag_iter - When to start late exaggeration.
% 'auto' means that late exaggeration is not used, unless
% late_exag_coeff>0. In that case, start_late_exag_iter is
% set to stop_early_exag_iter. Otherwise, set to equal the
% iteration at which late exaggeration should begin.
% Default: 'auto'
% opts.start_late_exag_iter - When to start late
% exaggeration. set to -1 to not use late exaggeration
% Default -1.
% opts.late_exag_coeff - Late exaggeration coefficient.
% Set to -1 to not use late exaggeration.
% Default -1
% opts.learning_rate - Set to desired learning rate or 'auto',
% which sets learning rate to N/early_exag_coeff where
% N is the sample size, or to 200 if N/early_exag_coeff
% < 200.
% Default 'auto'
% opts.max_step_norm - Maximum distance that a point is
% allowed to move on one iteration. Larger steps are clipped
% to this value. This prevents possible instabilities during
% gradient descent. Set to -1 to switch it off.
% Default: 5
% opts.no_momentum_during_exag - Set to 0 to use momentum
% and other optimization tricks. 1 to do plain,vanilla
% gradient descent (useful for testing large exaggeration
% coefficients)
% opts.nterms - If using FIt-SNE, this is the number of
% interpolation points per sub-interval
% opts.intervals_per_integer - See opts.min_num_intervals
% opts.min_num_intervals - Let maxloc = ceil(max(max(X)))
% and minloc = floor(min(min(X))). i.e. the points are in
% a [minloc]^no_dims by [maxloc]^no_dims interval/square.
% The number of intervals in each dimension is either
% opts.min_num_intervals or ceil((maxloc -
% minloc)/opts.intervals_per_integer), whichever is
% larger. opts.min_num_intervals must be an integer >0,
% and opts.intervals_per_integer must be >0. Default:
% opts.min_num_intervals=50, opts.intervals_per_integer =
% 1
%
% opts.sigma - Fixed sigma value to use when perplexity==-1
% Default -1 (None)
% opts.K - Number of nearest neighbours to get when using fixed sigma
% Default -30 (None)
%
% opts.initialization - 'pca', 'random', or N x no_dims array
% to intialize the solution
% Default: 'pca'
%
% opts.load_affinities - can be 'load', 'save', or 'none' (default)
% If 'save', input similarities are saved into a file.
% If 'load', input similarities are loaded from a file and not computed
%
% opts.perplexity_list - if perplexity==0 then perplexity
% combination will be used with values taken from
% perplexity_list. Default: []
% opts.df - Degree of freedom of t-distribution, must be greater than 0.
% Values smaller than 1 correspond to heavier tails, which can often
% resolve substructure in the embedding. See Kobak et al. (2019) for
% details. Default is 1.0
% Runs the C++ implementation of fast t-SNE using either the IFt-SNE
% implementation or Barnes Hut
% Copyright (c) 2014, Laurens van der Maaten (Delft University of Technology)
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
% 1. Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% 2. Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in the
% documentation and/or other materials provided with the distribution.
% 3. All advertising materials mentioning features or use of this software
% must display the following acknowledgement:
% This product includes software developed by the Delft University of Technology.
% 4. Neither the name of the Delft University of Technology nor the names of
% its contributors may be used to endorse or promote products derived from
% this software without specific prior written permission.
%
% THIS SOFTWARE IS PROVIDED BY LAURENS VAN DER MAATEN ''AS IS'' AND ANY EXPRESS
% OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
% OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
% EVENT SHALL LAURENS VAN DER MAATEN BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
% SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
% PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
% BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
% IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
% OF SUCH DAMAGE.
version_number = '1.2.1';
% default parameters and flags
p.perplexity = 30;
p.no_dims = 2;
p.theta = .5;
p.stop_early_exag_iter = 250; % stop_lying_iter
p.mom_switch_iter = 250;
p.momentum = .5;
p.final_momentum = .8;
p.learning_rate = 'auto';
p.max_step_norm = 5;
p.max_iter = 750;
p.early_exag_coeff = 12;
p.start_late_exag_iter = 'auto';
p.late_exag_coeff = -1;
p.rand_seed = -1;
p.nbody_algo = 2;
p.knn_algo = 1;
p.K = -1;
p.sigma = -30;
p.no_momentum_during_exag = 0;
p.n_trees = 50;
p.perplexity_list = [];
p.nterms = 3;
p.intervals_per_integer = 1;
p.min_num_intervals = 50;
p.nthreads = 0;
p.df = 1;
p.search_k = [];
p.initialization = 'auto';
p.load_affinities = 0;
if nargin == 2
% options provided
assert(isstruct(opts),'2nd argument must be a structure')
% copy over user-supplied parameters and options
fn = fieldnames(p);
for i = 1:length(fn)
if isfield(opts,fn{i})
p.(fn{i}) = opts.(fn{i});
end
end
end
if strcmpi(p.learning_rate,'auto')
p.learning_rate = max(200, size(X,1)/p.early_exag_coeff)
end
if strcmpi(p.start_late_exag_iter,'auto')
if p.late_exag_coeff > 0
p.start_late_exag_iter = p.stop_early_exag_iter
else
p.start_late_exag_iter = -1
end
end
if strcmpi(p.initialization,'auto')
if p.rand_seed>0
rng(p.rand_seed)
end
X_c = mean(X ,1);
X_c = bsxfun(@minus,X,X_c);
p.no_dims = 2
[U, S,V ] = svds(X_c, p.no_dims);
PCs = U * S;
p.initialization = 0.0001*(PCs/std(PCs(:,1)))
elseif strcmpi(p.initialization,'random')
p.initialization = NaN;
end
% parse some optional text labels
if strcmpi(p.nbody_algo,'bh')
p.nbody_algo = 1;
end
if strcmpi(p.knn_algo,'vptree')
p.knn_algo = 2;
end
if isempty(p.search_k)
if p.perplexity > 0
p.search_k = 3*p.perplexity*p.n_trees;
elseif p.perplexity == 0
p.search_k = 3 * max(p.perplexity_list) * p.n_trees;
else
p.search_k = 3*p.K*p.n_trees;
end
end
if p.load_affinities == 'load'
p.load_affinities = 1;
elseif p.load_affinities == 'save'
p.load_affinities = 2;
else
p.load_affinities = 0;
end
X = double(X);
tsne_path = which('fast_tsne');
tsne_path = strcat(tsne_path(1:end-11), 'bin')
% Compile t-SNE C code
if(~exist(fullfile(tsne_path,'./fast_tsne'),'file') && isunix)
system(sprintf('g++ -std=c++11 -O3 src/sptree.cpp src/tsne.cpp src/nbodyfft.cpp -o bin/fast_tsne -pthread -lfftw3 -lm'));
end
% Compile t-SNE C code on Windows
if(~exist(fullfile(tsne_path,'FItSNE.exe'),'file') && ispc)
system(sprintf('g++ -std=c++11 -O3 src/sptree.cpp src/tsne.cpp src/nbodyfft.cpp -o bin/FItSNE.exe -pthread -lfftw3 -lm'));
end
% Run the fast diffusion SNE implementation
write_data('data.dat', X, p.no_dims, p.theta, p.perplexity, p.max_iter, ...
p.stop_early_exag_iter, p.K, p.sigma, p.nbody_algo, p.no_momentum_during_exag, p.knn_algo,...
p.early_exag_coeff, p.n_trees, p.search_k, p.start_late_exag_iter, p.late_exag_coeff, p.rand_seed,...
p.nterms, p.intervals_per_integer, p.min_num_intervals, p.initialization, p.load_affinities, ...
p.perplexity_list, p.mom_switch_iter, p.momentum, p.final_momentum, p.learning_rate,p.max_step_norm,p.df);
disp('Data written');
tic
%[flag, cmdout] = system(fullfile(tsne_path,'/fast_tsne'), '-echo');
cmd = sprintf('%s %s data.dat result.dat %d',fullfile(tsne_path,'/fast_tsne'), version_number, p.nthreads);
[flag, cmdout] = system(cmd, '-echo');
if(flag~=0)
error(cmdout);
end
toc
[mappedX, costs] = read_data('result.dat', p.max_iter);
delete('data.dat');
delete('result.dat');
end
% Writes the datafile for the fast t-SNE implementation
function write_data(filename, X, no_dims, theta, perplexity, max_iter,...
stop_lying_iter, K, sigma, nbody_algo, no_momentum_during_exag, knn_algo,...
early_exag_coeff, n_trees, search_k, start_late_exag_iter, late_exag_coeff, rand_seed,...
nterms, intervals_per_integer, min_num_intervals, initialization, load_affinities, ...
perplexity_list, mom_switch_iter, momentum, final_momentum, learning_rate,max_step_norm,df)
[n, d] = size(X);
h = fopen(filename, 'wb');
fwrite(h, n, 'integer*4');
fwrite(h, d, 'integer*4');
fwrite(h, theta, 'double');
fwrite(h, perplexity, 'double');
if perplexity == 0
fwrite(h, length(perplexity_list), 'integer*4');
fwrite(h, perplexity_list, 'double');
end
fwrite(h, no_dims, 'integer*4');
fwrite(h, max_iter, 'integer*4');
fwrite(h, stop_lying_iter, 'integer*4');
fwrite(h, mom_switch_iter, 'integer*4');
fwrite(h, momentum, 'double');
fwrite(h, final_momentum, 'double');
fwrite(h, learning_rate, 'double');
fwrite(h, max_step_norm, 'double');
fwrite(h, K, 'int');
fwrite(h, sigma, 'double');
fwrite(h, nbody_algo, 'int');
fwrite(h, knn_algo, 'int');
fwrite(h, early_exag_coeff, 'double');
fwrite(h, no_momentum_during_exag, 'int');
fwrite(h, n_trees, 'int');
fwrite(h, search_k, 'int');
fwrite(h, start_late_exag_iter, 'int');
fwrite(h, late_exag_coeff, 'double');
fwrite(h, nterms, 'int');
fwrite(h, intervals_per_integer, 'double');
fwrite(h, min_num_intervals, 'int');
fwrite(h, X', 'double');
fwrite(h, rand_seed, 'integer*4');
fwrite(h, df, 'double');
fwrite(h, load_affinities, 'integer*4');
if ~isnan(initialization)
fwrite(h, initialization', 'double');
end
fclose(h);
end
% Reads the result file from the fast t-SNE implementation
function [X, costs] = read_data(file_name, max_iter)
h = fopen(file_name, 'rb');
n = fread(h, 1, 'integer*4');
d = fread(h, 1, 'integer*4');
X = fread(h, n * d, 'double');
max_iter = fread(h, 1, 'integer*4');
costs = fread(h, max_iter, 'double');
X = reshape(X, [d n])';
fclose(h);
end