-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayers.py
176 lines (136 loc) · 5.12 KB
/
layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
from initializations import weight_variable_glorot
import tensorflow.compat.v1 as tf
flags = tf.app.flags
FLAGS = flags.FLAGS
_LAYER_UIDS = {} # Global unique layer ID dictionary for layer name assignment
def get_layer_uid(layer_name = ''):
"""
Helper function, assigns unique layer IDs
"""
if layer_name not in _LAYER_UIDS:
_LAYER_UIDS[layer_name] = 1
return 1
else:
_LAYER_UIDS[layer_name] += 1
return _LAYER_UIDS[layer_name]
def dropout_sparse(x, keep_prob, num_nonzero_elems):
"""
Dropout for sparse tensors
"""
noise_shape = [num_nonzero_elems]
random_tensor = keep_prob
random_tensor += tf.random_uniform(noise_shape)
dropout_mask = tf.cast(tf.floor(random_tensor), dtype = tf.bool)
pre_out = tf.sparse_retain(x, dropout_mask)
return pre_out * (1./keep_prob)
class Layer(object):
"""
Base layer class. Defines basic API for all layer objects.
# Properties
name: String, defines the variable scope of the layer.
# Methods
_call(inputs): Defines computation graph of layer
(i.e. takes input, returns output)
__call__(inputs): Wrapper for _call()
"""
def __init__(self, **kwargs):
allowed_kwargs = {'name', 'logging'}
for kwarg in kwargs.keys():
assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg
name = kwargs.get('name')
if not name:
layer = self.__class__.__name__.lower()
name = layer + '_' + str(get_layer_uid(layer))
self.name = name
self.vars = {}
logging = kwargs.get('logging', False)
self.logging = logging
self.issparse = False
def _call(self, inputs):
return inputs
def __call__(self, inputs):
with tf.name_scope(self.name):
outputs = self._call(inputs)
return outputs
class GraphConvolution(Layer):
"""
Graph convolution layer
"""
def __init__(self, input_dim, output_dim, adj, dropout = 0., act = tf.nn.relu, **kwargs):
super(GraphConvolution, self).__init__(**kwargs)
with tf.variable_scope(self.name + '_vars'):
self.vars['weights'] = weight_variable_glorot(input_dim, output_dim, name = "weights")
self.dropout = dropout
self.adj = adj
self.act = act
def _call(self, inputs):
x = inputs
x = tf.nn.dropout(x, 1 - self.dropout)
x = tf.matmul(x, self.vars['weights'])
x = tf.sparse_tensor_dense_matmul(self.adj, x)
outputs = self.act(x)
return outputs
class GraphConvolutionSparse(Layer):
"""
Graph convolution layer for sparse inputs
"""
def __init__(self, input_dim, output_dim, adj, features_nonzero, dropout = 0., act = tf.nn.relu, **kwargs):
super(GraphConvolutionSparse, self).__init__(**kwargs)
with tf.variable_scope(self.name + '_vars'):
self.vars['weights'] = weight_variable_glorot(input_dim, output_dim, name = "weights")
self.dropout = dropout
self.adj = adj
self.act = act
self.issparse = True
self.features_nonzero = features_nonzero
def _call(self, inputs):
x = inputs
x = dropout_sparse(x, 1 - self.dropout, self.features_nonzero)
x = tf.sparse_tensor_dense_matmul(x, self.vars['weights'])
x = tf.sparse_tensor_dense_matmul(self.adj, x)
outputs = self.act(x)
return outputs
class InnerProductDecoder(Layer):
"""
Inner product decoder layer
"""
def __init__(self, sampled_nodes, dropout = 0., act = tf.nn.sigmoid, **kwargs):
super(InnerProductDecoder, self).__init__(**kwargs)
self.dropout = dropout
self.act = act
self.sampled_nodes = sampled_nodes # Nodes from sampled subgraph to decode
def _call(self, inputs):
inputs = tf.nn.dropout(inputs, 1 - self.dropout)
x = tf.transpose(inputs)
x = tf.matmul(inputs, x)
x = tf.reshape(x, [-1])
outputs = self.act(x)
return outputs
class DistanceDecoder(Layer):
"""
Exponential L2 distance term from the proposed
modularity-inspired loss term
"""
def __init__(self, sampled_nodes, dropout = 0., act = tf.nn.sigmoid, **kwargs):
super(DistanceDecoder, self).__init__(**kwargs)
self.dropout = dropout
self.act = act
self.sampled_nodes = sampled_nodes # Nodes from sampled subgraph to decode
def _call(self, inputs):
inputs = tf.nn.dropout(inputs, 1 - self.dropout)
# Get pairwise node distances in embedding
dist = pairwise_distance(inputs)
# Exponential
outputs = tf.exp(- FLAGS.gamma * tf.reshape(dist, [-1]))
outputs = self.act(outputs)
return outputs
def pairwise_distance(X, eps = 0.1):
"""
Pairwise distances between node pairs
:param X: n*d embedding matrix
:param epsilon: add a small value to distances for numerical stability
:return: n*n matrix of squared Euclidean distances
"""
x1 = tf.reduce_sum(X * X, 1, True)
x2 = tf.matmul(X, tf.transpose(X))
return x1 - 2 * x2 + tf.transpose(x1) + eps