-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathesn.py
310 lines (230 loc) · 10.7 KB
/
esn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import numpy as np
import pickle
import math
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def logit(x):
return - np.log(1 / x - 1)
class ESN:
def __init__(self, input_size, output_size, hidden_size=30, lamb=1, a=0.2, sp_rad=0.2,
washout=0, delta=0.9, online_training=True, bias=True):
self.input_size = input_size
self.output_size = output_size
self.hidden_size = hidden_size
self.washout = washout
self.lamb = lamb
self.a = a
self.sp_rad = sp_rad
self.delta = delta
self.hidden = np.zeros((self.hidden_size, 1))
self.output = np.zeros((self.output_size, 1))
self.bias = bias
if self.bias:
self.W_in = (np.random.rand(self.hidden_size, 1 + self.input_size) - 0.5) * 1
self.W = self.init_W()
self.W_out = np.zeros((self.output_size, 1 + self.input_size + self.hidden_size))
# stuff for online training
if online_training:
self.epsilon = 0
self.g = 0
self.P = 1 / self.delta * np.eye((1 + self.input_size + self.hidden_size))
self.k = np.zeros((1, 1 + self.input_size + self.hidden_size))
else:
self.offline_train()
else:
self.W_in = (np.random.rand(self.hidden_size, self.input_size) - 0.5) * 1
self.W = self.init_W()
self.W_out = np.zeros((self.output_size, self.input_size + self.hidden_size))
# stuff for online training
if online_training:
self.epsilon = 0
self.g = 0
self.P = 1 / self.delta * np.eye((self.input_size + self.hidden_size))
self.k = np.zeros((1, self.input_size + self.hidden_size))
else:
self.offline_train()
def forward_pass(self, inp):
concats = np.array([1])
concats = np.append(concats, inp).reshape(-1, 1)
if self.bias:
self.hidden = (1 - self.a) * self.hidden + self.a * np.tanh(np.dot(self.W_in, concats)
+ np.dot(self.W, self.hidden))
else:
self.hidden = (1 - self.a) * self.hidden + self.a * np.tanh(np.dot(self.W_in, inp)
+ np.dot(self.W, self.hidden))
def activate(self, inp):
self.forward_pass(inp)
if self.bias:
concats = np.array([1])
concats = np.append(concats, inp)
concats = np.append(concats, self.hidden).reshape(-1, 1)
self.output = np.dot(self.W_out, concats)
else:
concats = np.append(inp, self.hidden).reshape(-1, 1)
self.output = np.dot(self.W_out, concats)
#self.output[1] = np.tanh(self.output[1])
#
# if self.output_size == 1:
# self.output[2] = np.tanh(self.output[2])
# else:
# self.output[2:] = sigmoid(self.output[2:])
return self.output
def store_net(self, filename="net.pickle"):
pickle.dump(self, open(filename, 'wb'))
def reset(self):
self.hidden = np.zeros((self.hidden_size, 1))
self.output = np.zeros((self.output_size, 1))
def init_W(self):
W = np.random.rand(self.hidden_size, self.hidden_size) - 0.5
sp_rad_risc = max(abs(np.linalg.eig(W)[0]))
W *= (1 / sp_rad_risc)
W *= self.sp_rad
return W
def online_train(self, inp, target):
self.output = self.activate(inp).reshape(-1, 1)
targ = np.copy(target)
self.epsilon = (targ - self.output)
if self.bias:
h = np.vstack([1, inp, self.hidden])
else:
h = np.vstack([inp, self.hidden])
self.g = np.dot(self.P, h) / (self.lamb + np.dot(np.dot(h.T, self.P), h))
self.P = 1 / self.lamb * (self.P - np.dot(np.dot(self.g, h.T), self.P))
self.W_out += np.dot(self.g, self.epsilon.reshape((1, -1))).T
return self.output
def offline_train(self, ind=0):
filenames = ["./train_data/aalborg.csv", "./train_data/alpine-1.csv", "./train_data/f-speedway.csv"]
input_train, target_train, N, self.input_size = self.read_file(filenames[ind], 3)
X = np.zeros((1 + self.hidden_size + self.input_size, N - 1 - self.washout))
Yt = target_train[:, self.washout + 1:]
for t in range(N - 1):
inp = input_train[:, t].reshape(-1, 1)
self.forward_pass(inp)
if t >= self.washout:
X[:, t - self.washout] = np.vstack((1, inp, self.hidden)).squeeze()
self.W_out = self.ridge(X, Yt)
def ridge(self, X, Yt):
X_t = X.T
W_out = np.dot(np.dot(Yt, X_t),
np.linalg.inv(np.dot(X, X_t) + self.lamb * np.eye(1 + self.input_size + self.hidden_size)))
return W_out
def mse(self, out, targ):
return 0.5 * (np.sum((out - targ) ** 2))
def save_genome(self, file):
if self.bias:
parameters = np.zeros((self.hidden_size + self.output_size, 1 + self.hidden_size
+ self.input_size + self.output_size))
parameters[:self.output_size, : self.input_size] = self.W_out[:, 1: self.input_size + 1]
parameters[:self.output_size, self.input_size + self.output_size: -1] = self.W_out[:, self.input_size + 1:]
parameters[:self.output_size, -1] = self.W_out[:, 0]
parameters[self.output_size:, :self.input_size] = self.W_in[:, 1:]
parameters[self.output_size:, self.input_size + self.output_size:-1] = self.W
parameters[self.output_size:, -1] = self.W_in[:, 0]
np.savetxt(file, parameters, header=str(self.input_size) + ',' + str(self.output_size)
+ ',' + str(self.hidden_size) + ',' + str(1))
else:
parameters = np.zeros((self.hidden_size + self.output_size, self.hidden_size
+ self.input_size + self.output_size))
parameters[:self.output_size, : self.input_size] = self.W_out[:, : self.input_size]
parameters[:self.output_size, self.input_size + self.output_size:] = self.W_out[:, self.input_size:]
parameters[self.output_size:, :self.input_size] = self.W_in
parameters[self.output_size:, self.input_size + self.output_size:] = self.W
np.savetxt(file, parameters, header=str(self.input_size) + ',' + str(self.output_size)
+ ',' + str(self.hidden_size) + "," + str(0))
def read_file(filename, ster_out=1, reduce=True, sizes=False):
'''
accel_0,brake_0,gear_0,gear2_0,steer_0,clutch_0,curTime_0,angle_0,curLapTime_0,damage_0,distFromStart_0,
distRaced_0,fuel_0,lastLapTime_0,racePos_0,opponents_0,opponents_1,opponents_2,opponents_3,opponents_4,
opponents_5,opponents_6,opponents_7,opponents_8,opponents_9,opponents_10,opponents_11,opponents_12,
opponents_13,opponents_14,opponents_15,opponents_16,opponents_17,opponents_18,opponents_19,opponents_20,
opponents_21,opponents_22,opponents_23,opponents_24,opponents_25,opponents_26,opponents_27,opponents_28,
opponents_29,opponents_30,opponents_31,opponents_32,opponents_33,opponents_34,opponents_35,
rpm_0,speedX_0,speedY_0,speedZ_0,track_0,track_1,track_2,track_3,track_4,track_5,track_6,track_7,
track_8,track_9,track_10,track_11,track_12,track_13,track_14,track_15,track_16,track_17,track_18,
trackPos_0,wheelSpinVel_0,wheelSpinVel_1,wheelSpinVel_2,wheelSpinVel_3,z_0,
focus_0,focus_1,focus_2,focus_3,focus_4
:param filename:
:param output_size:
:return:
'''
f = open(filename, 'r')
lines = f.readlines()
N_max = len(lines) - 2
inputs = lines[0].split(",")
inputs_to_find = ["angle_0", "speedX_0", "speedY_0", "track_0", "track_18", "trackPos_0"]
#targets_to_find = ["accel_0", "brake_0", "steer_0"]
targets_to_find = ["speedX_0", "trackPos_0"]
indexes_inp = {}
indexes_out = {}
for string in inputs_to_find:
indexes_inp[string] = find_ind(string, inputs)
for string in targets_to_find:
indexes_out[string] = find_ind(string, inputs)
if ster_out == 1:
output_size = len(indexes_out)
else:
output_size = len(indexes_out) + 1
input_size = find_input_len(lines[1].split(","), indexes_inp, reduce)
input_train = np.zeros((N_max, input_size))
target_train = np.zeros((N_max, output_size))
for ind, line in enumerate(lines[1:N_max]):
lis = list(line.split(","))
input_train[ind] = np.array(inp_to_array(lis, indexes_inp, reduce))
target_train[ind] = np.array(target_to_array(lis, indexes_out, ster_out))
if sizes:
return input_train, target_train, N_max, input_size, output_size
else:
return input_train, target_train, N_max
def find_ind(string, lis):
index = None
for i in range(len(lis)):
if lis[i] == string:
index = i
return index
def find_input_len(lis, indexes, reduce=True):
inputs = inp_to_array(lis, indexes, reduce)
return len(inputs)
def inp_to_array(lis, indexes, reduce=True):
'''
inputs_to_find = ["angle_0", "speedX_0", "speedY_0", "track_0", "track_18", "trackPos_0"]
:param list:
:param indexes:
:param reduce:
:return:
'''
inp = list()
inp.append(float(lis[indexes["angle_0"]]) / 180.0)
inp.append(float(lis[indexes["speedX_0"]]) / 50.0)
inp.append(float(lis[indexes["speedY_0"]]) / 40.0)
distances_from_edge = lis[indexes["track_0"]:indexes["track_18"] + 1]
distance_from_center = float(lis[indexes["trackPos_0"]])
if reduce:
for idxs in [[0], [2], [4], [7, 9, 11], [14], [16], [18]]:
d = min([float(distances_from_edge[j]) for j in idxs])
if math.fabs(distance_from_center) > 1 or d < 0:
inp.append(-1)
else:
inp.append(d / 200.0)
else:
for element in distances_from_edge:
inp.append(element)
inp.append(distance_from_center)
return inp
def target_to_array(lis, indexes, ster_out):
target = list()
target.append(float(lis[indexes["speedX_0"]]))
# target.append(lis[indexes["accel_0"]])
# target.append(lis[indexes["brake_0"]])
#
# if ster_out == 1:
# target.append(lis[indexes["steer_0"]])
# else:
# steer = float(lis[indexes["steer_0"]])
# if steer >= 0:
# target.append(steer)
# target.append(0.0)
# else:
# target.append(0.0)
# target.append((-1.0) * steer)
target.append(lis[indexes["trackPos_0"]])
return target