-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathrun_vis.py
executable file
·328 lines (246 loc) · 12.3 KB
/
run_vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# Copyright Niantic 2019. Patent Pending. All rights reserved.
#
# This software is licensed under the terms of the Monodepth2 licence
# which allows for non-commercial use only, the full terms of which are made
# available in the LICENSE file.
from __future__ import absolute_import, division, print_function
import os
import os.path as osp
import json
import time
import cv2
import torch.distributed as dist
from torch.utils.data import DataLoader
from torch.utils.data import DistributedSampler as _DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import datasets
import networks
from options import MonodepthOptions
from utils.loss_metric import *
from utils.layers import *
def get_dist_info(return_gpu_per_machine=False):
if torch.__version__ < '1.0':
initialized = dist._initialized
else:
if dist.is_available():
initialized = dist.is_initialized()
else:
initialized = False
if initialized:
rank = dist.get_rank()
world_size = dist.get_world_size()
else:
rank = 0
world_size = 1
if return_gpu_per_machine:
gpu_per_machine = torch.cuda.device_count()
return rank, world_size, gpu_per_machine
return rank, world_size
class DistributedSampler(_DistributedSampler):
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True):
super().__init__(dataset, num_replicas=num_replicas, rank=rank)
self.shuffle = shuffle
def __iter__(self):
if self.shuffle:
g = torch.Generator()
g.manual_seed(self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist()
else:
indices = torch.arange(len(self.dataset)).tolist()
indices = indices[self.rank:self.total_size:self.num_replicas]
return iter(indices)
class Runer:
def __init__(self, options):
self.opt = options
self.opt.B = self.opt.batch_size // 6
if self.opt.debug:
self.opt.voxels_size = [8, 128, 128]
self.opt.render_h = 45
self.opt.render_w = 80
self.opt.num_workers = 1
self.opt.model_name = "debug/"
self.log_path = osp.join(self.opt.log_dir, self.opt.model_name + 'exp-{}'.format(time.strftime("%Y_%m_%d-%H_%M", time.localtime())))
print('log path:', self.log_path)
os.makedirs(osp.join(self.log_path, 'eval'), exist_ok=True)
os.makedirs(osp.join(self.log_path, 'models'), exist_ok=True)
os.makedirs(osp.join(self.log_path, 'visual_rgb_depth'), exist_ok=True)
os.makedirs(osp.join(self.log_path, 'visual_feature'), exist_ok=True)
os.makedirs(osp.join(self.log_path, 'scene_video'), exist_ok=True)
self.models = {}
self.local_rank = self.opt.local_rank
torch.cuda.set_device(self.local_rank)
dist.init_process_group(backend='nccl')
self.device = torch.device("cuda", self.local_rank)
self.num_scales = len(self.opt.scales)
self.num_input_frames = len(self.opt.frame_ids)
# self.num_pose_frames = 2 if self.opt.pose_model_input == "pairs" else self.num_input_frames
assert self.opt.frame_ids[0] == 0, "frame_ids must start with 0"
self.models["encoder"] = networks.Encoder_res101(self.opt.input_channel, path=None, network_type=self.opt.encoder)
self.models["depth"] = networks.VolumeDecoder(self.opt)
self.log_print('N_samples: {}'.format(self.models["depth"].N_samples))
self.log_print('Voxel size: {}'.format(self.models["depth"].voxel_size))
self.models["encoder"] = self.models["encoder"].to(self.device)
self.models["depth"] = self.models["depth"].to(self.device)
if self.opt.load_weights_folder is not None:
self.load_model()
for key in self.models.keys():
self.models[key] = DDP(self.models[key], device_ids=[self.local_rank], output_device=self.local_rank,
find_unused_parameters=True, broadcast_buffers=False)
if self.local_rank == 0:
self.log_print("Training model named: {}".format(self.opt.model_name))
datasets_dict = {"nusc": datasets.NuscDatasetVis}
self.dataset = datasets_dict[self.opt.dataset]
self.opt.batch_size = self.opt.batch_size // 6
val_dataset = self.dataset(self.opt,
self.opt.height, self.opt.width,
[0], num_scales=1, is_train=False, # the first is frame_ids
volume_depth=self.opt.volume_depth)
rank, world_size = get_dist_info()
self.world_size = world_size
val_sampler = DistributedSampler(val_dataset, world_size, rank, shuffle=False)
self.val_loader = DataLoader(
val_dataset, self.opt.batch_size, collate_fn=self.my_collate,
num_workers=self.opt.num_workers, pin_memory=True, drop_last=False, sampler=val_sampler)
self.num_val = len(val_dataset)
self.opt.batch_size = self.opt.batch_size * 6
self.num_val = self.num_val * 6
self.save_opts()
def my_collate(self, batch):
batch_new = {}
keys_list = list(batch[0].keys())
special_key_list = ['id', 'scene_name', 'frame_idx']
for key in keys_list:
if key not in special_key_list:
# print('key:', key)
batch_new[key] = [item[key] for item in batch]
try:
batch_new[key] = torch.cat(batch_new[key], axis=0)
except:
print('key', key)
else:
batch_new[key] = []
for item in batch:
for value in item[key]:
# print(value.shape)
batch_new[key].append(value)
return batch_new
def to_device(self, inputs):
special_key_list = ['id', ('K_ori', -1), ('K_ori', 1), 'scene_name', 'frame_idx']
for key, ipt in inputs.items():
if key in special_key_list:
inputs[key] = ipt
else:
inputs[key] = ipt.to(self.device)
def set_eval(self):
"""Convert all models to testing/evaluation mode
"""
for m in self.models.values():
m.eval()
def val(self, save_image=True):
"""Validate the model on a single minibatch
"""
self.set_eval()
print('begin eval!')
total_time = []
total_evl_time = time.time()
with torch.no_grad():
loader = self.val_loader
for idx, data in enumerate(loader):
eps_time = time.time()
input_color = data[("color", 0, 0)].cuda()
camera_ids = data["id"]
features = self.models["encoder"](input_color)
output = self.models["depth"](features, data, is_train=False, no_depth=self.opt.use_semantic)
eps_time = time.time() - eps_time
total_time.append(eps_time)
if self.local_rank == 0 and idx % 100 == 0:
print('single inference:(eps time:', eps_time, 'secs)')
if not self.opt.use_semantic:
pred_depths = output[("disp", 0)].cpu()[:, 0].numpy()
concated_image_list = []
concated_depth_list = []
for i in range(input_color.shape[0]):
camera_id = camera_ids[i]
color = (input_color[i].cpu().permute(1, 2, 0).numpy()) * 255
color = color[..., [2, 1, 0]]
concated_image_list.append(cv2.resize(color.copy(), (320, 180)))
if not self.opt.use_semantic:
pred_depth = pred_depths[i]
pred_depth_color = visualize_depth(pred_depth.copy())
concated_depth_list.append(cv2.resize(pred_depth_color.copy(), (320, 180)))
image_left_front_right = np.concatenate(
(concated_image_list[1], concated_image_list[0], concated_image_list[5]), axis=1)
image_left_rear_right = np.concatenate(
(concated_image_list[2], concated_image_list[3], concated_image_list[4]), axis=1)
# image_surround_view = np.concatenate((image_left_front_right, image_left_rear_right), axis=0)
if not self.opt.use_semantic:
depth_left_front_right = np.concatenate(
(concated_depth_list[1], concated_depth_list[0], concated_depth_list[5]), axis=1)
depth_left_rear_right = np.concatenate(
(concated_depth_list[2], concated_depth_list[3], concated_depth_list[4]), axis=1)
# depth_surround_view = np.concatenate((depth_left_front_right, depth_left_rear_right), axis=0)
surround_view_up = np.concatenate((image_left_front_right, depth_left_front_right), axis=0)
surround_view_down = np.concatenate((image_left_rear_right, depth_left_rear_right), axis=0)
else:
surround_view_up = image_left_front_right
surround_view_down = image_left_rear_right
scene_name = data['scene_name'][0]
frame_idx = data['frame_idx'][0]
os.makedirs('{}/scene_video/{}'.format(self.log_path, scene_name), exist_ok=True)
cv2.imwrite('{}/scene_video/{}/{:03d}-up.jpg'.format(self.log_path, scene_name, frame_idx), surround_view_up)
cv2.imwrite('{}/scene_video/{}/{:03d}-down.jpg'.format(self.log_path, scene_name, frame_idx), surround_view_down)
vis_dic = {}
# vis_dic['opt'] = self.opt
# vis_dic['depth_color'] = concated_depth_list
# vis_dic['rgb'] = concated_image_list
vis_dic['pose_spatial'] = data['pose_spatial'].detach().cpu().numpy()
vis_dic['probability'] = output['density'].detach().cpu().numpy()
np.save('{}/scene_video/{}/{:03d}-out.npy'.format(self.log_path, scene_name, frame_idx), vis_dic)
eps_time = time.time() - total_evl_time
print('finish eval!')
def save_opts(self):
"""Save options to disk so we know what we ran this experiment with
"""
models_dir = osp.join(self.log_path, "models")
if not osp.exists(models_dir):
os.makedirs(models_dir)
os.makedirs(osp.join(self.log_path, "eval"), exist_ok=True)
to_save = self.opt.__dict__.copy()
with open(osp.join(models_dir, 'opt.json'), 'w') as f:
json.dump(to_save, f, indent=2)
def load_model(self):
"""Load model(s) from disk
"""
self.opt.load_weights_folder = osp.expanduser(self.opt.load_weights_folder)
if self.local_rank == 0:
assert osp.isdir(self.opt.load_weights_folder), \
"Cannot find folder {}".format(self.opt.load_weights_folder)
self.log_print("loading model from folder {}".format(self.opt.load_weights_folder))
for n in self.opt.models_to_load:
if self.local_rank == 0:
self.log_print("Loading {} weights...".format(n))
path = osp.join(self.opt.load_weights_folder, "{}.pth".format(n))
model_dict = self.models[n].state_dict()
pretrained_dict = torch.load(path, map_location=torch.device('cpu'))
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
self.models[n].load_state_dict(model_dict)
def log_print(self, str):
print(str)
with open(osp.join(self.log_path, 'log.txt'), 'a') as f:
f.writelines(str + '\n')
def log_print_train(self, str):
print(str)
with open(osp.join(self.log_path, 'log_train.txt'), 'a') as f:
f.writelines(str + '\n')
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
if __name__ == "__main__":
options = MonodepthOptions()
opts = options.parse()
setup_seed(42)
runner = Runer(opts)
runner.val()