[] custom node types (not just dense, but also convolutional)
[x] custom pooling operator (sum, random, mean, max, min)
[x] add dropout
[x] add BN
[x] add parameter to disable spiking
[] support a named reward
parameter
[] the larger network should support other node types such as
- https://github.com/ridgerchu/SpikeGPT
- https://github.com/BlinkDL/RWKV-LM
- my self organizing maps library, reimplemented in pytorch. Actually just implement teh unsupervized library
-
[] Forewar-forward learnign
[] small circuit local feedback alignment
MPNet(
nodes={
'nodeA': Node((64,64,DIMS), ...),
'nodeB': nodeB := Node((16,16,DIMS), ...),
},
edges=[
('nodeA', 'nodeB'),
Edge('nodeA', 'nodeB', bidirectional=True),
SparseEdge(nodeB, 'nodeA.param1', sparsity=0.1,)
]
)