From 73da3f1875769068ec17ecc98fdea677269864ad Mon Sep 17 00:00:00 2001 From: Yoav HaCohen Date: Thu, 21 Nov 2024 16:55:32 +0200 Subject: [PATCH] LTX-Video: Initial commit --- .gitattributes | 4 + .github/workflows/pylint.yml | 27 + .gitignore | 165 +++ .pre-commit-config.yaml | 16 + LICENSE | 68 + README.md | 97 ++ docs/_static/ltx-video_example_00001.gif | 3 + docs/_static/ltx-video_example_00002.gif | 3 + docs/_static/ltx-video_example_00003.gif | 3 + docs/_static/ltx-video_example_00004.gif | 3 + docs/_static/ltx-video_example_00005.gif | 3 + docs/_static/ltx-video_example_00006.gif | 3 + docs/_static/ltx-video_example_00007.gif | 3 + docs/_static/ltx-video_example_00008.gif | 3 + docs/_static/ltx-video_example_00009.gif | 3 + docs/_static/ltx-video_example_00010.gif | 3 + docs/_static/ltx-video_example_00011.gif | 3 + docs/_static/ltx-video_example_00012.gif | 3 + docs/_static/ltx-video_example_00013.gif | 3 + docs/_static/ltx-video_example_00014.gif | 3 + docs/_static/ltx-video_example_00015.gif | 3 + docs/_static/ltx-video_example_00016.gif | 3 + inference.py | 444 ++++++ ltx_video/__init__.py | 0 ltx_video/models/__init__.py | 0 ltx_video/models/autoencoders/__init__.py | 0 .../models/autoencoders/causal_conv3d.py | 62 + .../autoencoders/causal_video_autoencoder.py | 1199 ++++++++++++++++ .../models/autoencoders/conv_nd_factory.py | 82 ++ ltx_video/models/autoencoders/dual_conv3d.py | 195 +++ ltx_video/models/autoencoders/pixel_norm.py | 12 + ltx_video/models/autoencoders/vae.py | 343 +++++ ltx_video/models/autoencoders/vae_encode.py | 195 +++ .../models/autoencoders/video_autoencoder.py | 1045 ++++++++++++++ ltx_video/models/transformers/__init__.py | 0 ltx_video/models/transformers/attention.py | 1206 +++++++++++++++++ ltx_video/models/transformers/embeddings.py | 129 ++ .../transformers/symmetric_patchifier.py | 96 ++ .../models/transformers/transformer3d.py | 491 +++++++ ltx_video/pipelines/__init__.py | 0 ltx_video/pipelines/pipeline_ltx_video.py | 1156 ++++++++++++++++ ltx_video/schedulers/__init__.py | 0 ltx_video/schedulers/rf.py | 296 ++++ ltx_video/utils/__init__.py | 0 ltx_video/utils/conditioning_method.py | 6 + ltx_video/utils/torch_utils.py | 25 + pyproject.toml | 34 + 47 files changed, 7441 insertions(+) create mode 100644 .gitattributes create mode 100644 .github/workflows/pylint.yml create mode 100644 .gitignore create mode 100644 .pre-commit-config.yaml create mode 100644 LICENSE create mode 100644 README.md create mode 100644 docs/_static/ltx-video_example_00001.gif create mode 100644 docs/_static/ltx-video_example_00002.gif create mode 100644 docs/_static/ltx-video_example_00003.gif create mode 100644 docs/_static/ltx-video_example_00004.gif create mode 100644 docs/_static/ltx-video_example_00005.gif create mode 100644 docs/_static/ltx-video_example_00006.gif create mode 100644 docs/_static/ltx-video_example_00007.gif create mode 100644 docs/_static/ltx-video_example_00008.gif create mode 100644 docs/_static/ltx-video_example_00009.gif create mode 100644 docs/_static/ltx-video_example_00010.gif create mode 100644 docs/_static/ltx-video_example_00011.gif create mode 100644 docs/_static/ltx-video_example_00012.gif create mode 100644 docs/_static/ltx-video_example_00013.gif create mode 100644 docs/_static/ltx-video_example_00014.gif create mode 100644 docs/_static/ltx-video_example_00015.gif create mode 100644 docs/_static/ltx-video_example_00016.gif create mode 100644 inference.py create mode 100644 ltx_video/__init__.py create mode 100644 ltx_video/models/__init__.py create mode 100644 ltx_video/models/autoencoders/__init__.py create mode 100644 ltx_video/models/autoencoders/causal_conv3d.py create mode 100644 ltx_video/models/autoencoders/causal_video_autoencoder.py create mode 100644 ltx_video/models/autoencoders/conv_nd_factory.py create mode 100644 ltx_video/models/autoencoders/dual_conv3d.py create mode 100644 ltx_video/models/autoencoders/pixel_norm.py create mode 100644 ltx_video/models/autoencoders/vae.py create mode 100644 ltx_video/models/autoencoders/vae_encode.py create mode 100644 ltx_video/models/autoencoders/video_autoencoder.py create mode 100644 ltx_video/models/transformers/__init__.py create mode 100644 ltx_video/models/transformers/attention.py create mode 100644 ltx_video/models/transformers/embeddings.py create mode 100644 ltx_video/models/transformers/symmetric_patchifier.py create mode 100644 ltx_video/models/transformers/transformer3d.py create mode 100644 ltx_video/pipelines/__init__.py create mode 100644 ltx_video/pipelines/pipeline_ltx_video.py create mode 100644 ltx_video/schedulers/__init__.py create mode 100644 ltx_video/schedulers/rf.py create mode 100644 ltx_video/utils/__init__.py create mode 100644 ltx_video/utils/conditioning_method.py create mode 100644 ltx_video/utils/torch_utils.py create mode 100644 pyproject.toml diff --git a/.gitattributes b/.gitattributes new file mode 100644 index 0000000..7ba3ccc --- /dev/null +++ b/.gitattributes @@ -0,0 +1,4 @@ +*.jpg filter=lfs diff=lfs merge=lfs -text +*.jpeg filter=lfs diff=lfs merge=lfs -text +*.png filter=lfs diff=lfs merge=lfs -text +*.gif filter=lfs diff=lfs merge=lfs -text diff --git a/.github/workflows/pylint.yml b/.github/workflows/pylint.yml new file mode 100644 index 0000000..a07ba7b --- /dev/null +++ b/.github/workflows/pylint.yml @@ -0,0 +1,27 @@ +name: Ruff + +on: [push] + +jobs: + build: + runs-on: ubuntu-latest + strategy: + matrix: + python-version: ["3.10"] + steps: + - name: Checkout repository and submodules + uses: actions/checkout@v3 + - name: Set up Python ${{ matrix.python-version }} + uses: actions/setup-python@v3 + with: + python-version: ${{ matrix.python-version }} + - name: Install dependencies + run: | + python -m pip install --upgrade pip + pip install ruff==0.2.2 black==24.2.0 + - name: Analyzing the code with ruff + run: | + ruff $(git ls-files '*.py') + - name: Verify that no Black changes are required + run: | + black --check $(git ls-files '*.py') diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..0ac3d31 --- /dev/null +++ b/.gitignore @@ -0,0 +1,165 @@ +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ +cover/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +.pybuilder/ +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +# For a library or package, you might want to ignore these files since the code is +# intended to run in multiple environments; otherwise, check them in: +# .python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# poetry +# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. +# This is especially recommended for binary packages to ensure reproducibility, and is more +# commonly ignored for libraries. +# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control +#poetry.lock + +# pdm +# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. +#pdm.lock +# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it +# in version control. +# https://pdm.fming.dev/latest/usage/project/#working-with-version-control +.pdm.toml +.pdm-python +.pdm-build/ + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ + +# pytype static type analyzer +.pytype/ + +# Cython debug symbols +cython_debug/ + +# PyCharm +# JetBrains specific template is maintained in a separate JetBrains.gitignore that can +# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore +# and can be added to the global gitignore or merged into this file. For a more nuclear +# option (not recommended) you can uncomment the following to ignore the entire idea folder. +.idea/ + +# From inference.py +video_output_*.mp4 \ No newline at end of file diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml new file mode 100644 index 0000000..e098114 --- /dev/null +++ b/.pre-commit-config.yaml @@ -0,0 +1,16 @@ +repos: + - repo: https://github.com/astral-sh/ruff-pre-commit + # Ruff version. + rev: v0.2.2 + hooks: + # Run the linter. + - id: ruff + args: [--fix] # Automatically fix issues if possible. + types: [python] # Ensure it only runs on .py files. + + - repo: https://github.com/psf/black + rev: 24.2.0 # Specify the version of Black you want + hooks: + - id: black + name: Black code formatter + language_version: python3 # Use the Python version you're targeting (e.g., 3.10) \ No newline at end of file diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000..e648fea --- /dev/null +++ b/LICENSE @@ -0,0 +1,68 @@ +LTX Video 0.9 (“LTXV”) +By Lightricks Ltd. (“Lightricks”) +RAIL-M License +dated November 22, 2024 +Section I: PREAMBLE +Multimodal generative models are being widely adopted and used, and have the potential to transform the way artists, among other individuals, conceive and benefit from artificial intelligence (“AI”) or ML technologies as a tool for content creation. Notwithstanding the current and potential benefits that these artifacts can bring to society at large, there are also concerns about potential misuses of them, either due to their technical limitations or ethical considerations. +The development and use of AI does not come without concerns. The world has witnessed how AI techniques may, in some instances, become risky for the public in general. These risks come in many forms, from racial discrimination to the misuse of sensitive information. +This RAIL-M License is generally applicable to any machine-learning Model (as defined below). The “RAIL” nomenclature indicates that there are use restrictions prohibiting the use of the Model. These restrictions are intended to avoid potential misuse by not permitting the use of the Model in very specific scenarios, in order for the licensor to be able to enforce the license in case a potential misuse of the Model may occur. Even though derivative versions of the Model could be released under different licensing terms, the License (as defined below) specifies that the use restrictions in the original License must apply to such derivative versions. This License governs the use of the Model (and its derivatives) and is informed by the model card associated with the Model. +NOW THEREFORE, You and Licensor agree as follows: +1. Definitions + 1. “Complementary Material” means the applicable source code and scripts used to define, run, load, benchmark or evaluate the Model, and used to prepare data for training or evaluation, if any. This includes any accompanying documentation, tutorials, examples, etc, if any. Complementary Material is not licensed under this License. + 2. “Contribution” means any work of authorship, including the original version of the Model and any modifications or additions to that Model or Derivatives of the Model thereof, that is intentionally submitted to Licensor for inclusion in the Model by the rights owner or by an individual or legal entity authorized to submit on behalf of the rights owner. For the purposes of this definition, “submitted” means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Model, but excluding communication that is conspicuously marked or otherwise designated in writing by the rights owner as “Not a Contribution.” + 3. “Contributor” means Licensor and any individual or legal entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Model. + 4. “Data” means a collection of information and/or content extracted from the dataset used with the Model, including to train, pretrain, or otherwise evaluate the Model. The Data is not licensed under this License. + 5. “Derivatives of the Model” means all modifications to the Model, works based on the Model, or any other model which is created or initialized by transfer of patterns of the weights, parameters, activations or output of the Model, to the other model, in order to cause the other model to perform similarly to the Model, including – but not limited to – distillation methods entailing the use of intermediate data representations or methods based on the generation of synthetic data by the Model for training the other model. + 6. “Distribution” means any transmission, reproduction, publication or other sharing of the Model or Derivatives of the Model to a third party, including providing the Model as a hosted service made available by electronic or other remote means – e.g. API-based or web access. + 7. “Harm” includes but is not limited to physical, mental, psychological, financial and reputational damage, pain, or loss. + 8. “License” means the terms and conditions for use, reproduction, and Distribution as defined in this document. + 9. “Licensor” means the rights owner or entity authorized by the rights owner that is granting the License, including the persons or entities that may have rights in the Model and/or distributing the Model. For the purposes of this License, the Licensor is Lightricks Ltd. + 10. “Model” means any accompanying machine-learning based assemblies (including checkpoints), consisting of learnt weights, parameters (including optimizer states), corresponding to the Lightricks’ Model “LTX Video 0.9” model architecture as embodied in the Complementary Material, that have been trained or tuned, in whole or in part on the Data, using the Complementary Material. + 11. ”Output” means the results of operating a Model as embodied in informational content resulting therefrom. + 12. “Permitted Purpose” means for academic or research purposes only, and explicitly excludes commercialization such as downstream selling of the Model or Derivatives of the Model. + 13. “Third Parties” means individuals or legal entities that are not under common control with Licensor or You. + 14. “You” (or “Your”) means an individual or legal entity exercising permissions granted by this License and/or making use of the Model for whichever purpose and in any field of use, including usage of the Model in an end-use application – e.g. chatbot, translator, image generator. +Section II: INTELLECTUAL PROPERTY RIGHTS +Both copyright and patent grants apply to the Model and Derivatives of the Model. The Model and Derivatives of the Model are subject to additional terms as described in Section III, which shall govern the use of the Model and Derivatives of the Model even in the event Section II is held unenforceable. +2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare, publicly display, publicly perform, sublicense, and distribute the Model and Derivatives of the Model, only for the Permitted Purpose. +3. Grant of Patent License. Subject to the terms and conditions of this License and where and as applicable, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this paragraph) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Model and/or Derivatives of the Model, but only for the Permitted Purpose. Such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Model or Derivatives of the Model to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Model or Derivative of the Model and/or a Contribution incorporated within the Model or Derivative of the Model constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for the Model and/or Derivative of the Model shall terminate as of the date such litigation is asserted or filed. +Section III: CONDITIONS OF USAGE, DISTRIBUTION AND REDISTRIBUTION +4. Distribution and Redistribution. You may host for Third Party remote access purposes (e.g. software-as-a-service), reproduce and distribute copies of the Model or Derivatives of the Model thereof in any medium, with or without modifications, provided that You meet the following conditions: + 1. Use-based restrictions as referenced in paragraph 5 MUST be included as an enforceable provision by You in any type of legal agreement (e.g. a license) governing the use and/or distribution of the Model or Derivatives of the Model, and You shall give notice to subsequent users You Distribute to, that the Model or Derivatives of the Model are subject to paragraph 5. + 2. You must give any Third Party recipients of the Model or Derivatives of the Model a copy of this License; + 3. You must cause any modified files to carry prominent notices stating that You changed the files; + 4. You must retain all copyright, patent, trademark, and attribution notices excluding those notices that do not pertain to any part of the Model, Derivatives of the Model. + 5. You and any Third Party recipients of the Model or Derivatives of the Model must adhere to the Permitted Purpose. +You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions – respecting paragraph 4.1. – for use, reproduction, or Distribution of Your modifications, or for any such Derivatives of the Model as a whole, provided Your use, reproduction, and Distribution of the Model otherwise complies with the conditions stated in this License. +5. Use-based restrictions. The restrictions set forth in Attachment A are considered Use-based restrictions. Therefore You cannot use the Model or the Derivatives of the Model in violation of such restrictions. You may use the Model subject to this License, including only for lawful purposes and in accordance with the License. “Use” may include creating any content with, fine-tuning, updating, running, training, evaluating and/or re-parametrizing the Model. You shall require all of Your users who use the Model or a Derivative of the Model to comply with the terms of this paragraph 5. +6. The Output You Generate. Except as set forth herein, Licensor claims no rights in the Output You generate using the Model. You are accountable for the input you insert into the Model, the Output you generate and its subsequent uses. No use of the Output can contravene any provision as stated in the License. +Section IV: OTHER PROVISIONS +7. Updates and Runtime Restrictions. To the maximum extent permitted by law, Licensor reserves the right to restrict (remotely or otherwise) usage of the Model in violation of this License, update the Model through electronic means, or modify the Output of the Model based on updates. You shall undertake reasonable efforts to use the latest version of the Model. Any use of the non-current version of the Model is done solely at your risk. +8. Trademarks and related. Nothing in this License permits You to make use of Licensor’s trademarks, trade names, logos or to otherwise suggest endorsement or misrepresent the relationship between the parties; and any rights not expressly granted herein are reserved by the Licensor. +9. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Model (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Model and Derivatives of the Model, and assume any risks associated with Your exercise of permissions under this License. +10. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Model (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. +11. Accepting Warranty or Additional Liability. While redistributing the Model or Derivatives of the Model, You may choose to charge a fee in exchange for support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against such Contributor, by reason of your accepting any such warranty or additional liability. +12. If any provision of this License is held to be invalid, illegal or unenforceable, the remaining provisions shall be unaffected thereby and remain valid as if such provision had not been set forth herein. +END OF TERMS AND CONDITIONS +________________ + + +Attachment A +Use Restrictions +You agree not to use the Model or its Derivatives in any of the following ways: +1. Outside of the Permitted Purpose; +2. In any way that violates any applicable national, federal, state, local or international law or regulation. +3. For the purpose of exploiting, Harming or attempting to exploit or Harm minors in any way; +4. To generate or disseminate false information and/or content with the purpose of Harming others; +5. To generate or disseminate personal identifiable information that can be used to Harm an individual; +6. To generate or disseminate information and/or content (e.g. images, code, posts, articles), and place the information and/or content in any context (e.g. bot generating tweets) without expressly and intelligibly disclaiming that the information and/or content is machine generated; +7. To defame, disparage or otherwise harass others; +8. To impersonate or attempt to impersonate (e.g. deepfakes) others without their consent; +9. For fully automated decision making that adversely impacts an individual’s legal rights or otherwise creates or modifies a binding, enforceable obligation; +10. For any use intended to or which has the effect of discriminating against or Harming individuals or groups based on online or offline social behavior or known or predicted personal or personality characteristics; +11. To exploit any of the vulnerabilities of a specific group of persons based on their age, social, physical or mental characteristics, in order to materially distort the behavior of a person belonging to that group in a manner that causes or is likely to cause that person or another person Harm; +12. For any use intended to or which has the effect of discriminating against individuals or groups based on legally protected characteristics or categories; +13. To generate or disseminate information for the purpose to be used for administration of justice, law enforcement, immigration or asylum processes, such as predicting an individual will commit fraud/crime commitment (e.g. by text profiling, drawing causal relationships between assertions made in documents, indiscriminate and arbitrarily-targeted use); +14. To generate and/or disseminate malware (including – but not limited to – ransomware) or any other content to be used for the purpose of harming electronic systems; +15. To engage in, promote, incite, or facilitate discrimination or other unlawful of harmful conduct in the provision of employment, employment benefits, credit, housing, or other essential goods and services; +16. To engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals. \ No newline at end of file diff --git a/README.md b/README.md new file mode 100644 index 0000000..eacfc40 --- /dev/null +++ b/README.md @@ -0,0 +1,97 @@ +
+ +# LTX-Video + +This is the official repository for LTX-Video. + +[Website](https://www.lightricks.com/ltxv) | +[Model](https://huggingface.co/Lightricks/LTX-Video) | +[Demo](https://fal.ai/models/fal-ai/ltx-video) | +[Paper (Soon)](https://github.com/Lightricks/LTX-Video) + +
+ +## Table of Contents + +* [Introduction](#introduction) +* [Quick start guide](#quick-start-guide) + * [Installation](#installation) + * [Inference](#inference) + * [ComfyUI Integration](#comfyui-integration) +* [Model User guide](#model-user-guide) +* [Acknowledgement](#acknowledgement) + +# Introduction + +LTX-Video is the first DiT-based video generation model that can generate high-quality videos in *real-time*. +It can generate 24 FPS videos at 768x512 resolution, faster than it takes to watch them. +The model is trained on a large-scale dataset of diverse videos and can generate high-resolution videos +with realistic and diverse content. + +| | | | | +|:---:|:---:|:---:|:---:| +| ![example1](./docs/_static/ltx-video_example_00001.gif)
A woman with long brown hair and light skin smiles at another woman...A woman with long brown hair and light skin smiles at another woman with long blonde hair. The woman with brown hair wears a black jacket and has a small, barely noticeable mole on her right cheek. The camera angle is a close-up, focused on the woman with brown hair's face. The lighting is warm and natural, likely from the setting sun, casting a soft glow on the scene. The scene appears to be real-life footage.
| ![example2](./docs/_static/ltx-video_example_00002.gif)
A woman walks away from a white Jeep parked on a city street at night...A woman walks away from a white Jeep parked on a city street at night, then ascends a staircase and knocks on a door. The woman, wearing a dark jacket and jeans, walks away from the Jeep parked on the left side of the street, her back to the camera; she walks at a steady pace, her arms swinging slightly by her sides; the street is dimly lit, with streetlights casting pools of light on the wet pavement; a man in a dark jacket and jeans walks past the Jeep in the opposite direction; the camera follows the woman from behind as she walks up a set of stairs towards a building with a green door; she reaches the top of the stairs and turns left, continuing to walk towards the building; she reaches the door and knocks on it with her right hand; the camera remains stationary, focused on the doorway; the scene is captured in real-life footage.
| ![example3](./docs/_static/ltx-video_example_00003.gif)
A woman with blonde hair styled up, wearing a black dress...A woman with blonde hair styled up, wearing a black dress with sequins and pearl earrings, looks down with a sad expression on her face. The camera remains stationary, focused on the woman's face. The lighting is dim, casting soft shadows on her face. The scene appears to be from a movie or TV show.
| ![example4](./docs/_static/ltx-video_example_00004.gif)
The camera pans over a snow-covered mountain range...The camera pans over a snow-covered mountain range, revealing a vast expanse of snow-capped peaks and valleys.The mountains are covered in a thick layer of snow, with some areas appearing almost white while others have a slightly darker, almost grayish hue. The peaks are jagged and irregular, with some rising sharply into the sky while others are more rounded. The valleys are deep and narrow, with steep slopes that are also covered in snow. The trees in the foreground are mostly bare, with only a few leaves remaining on their branches. The sky is overcast, with thick clouds obscuring the sun. The overall impression is one of peace and tranquility, with the snow-covered mountains standing as a testament to the power and beauty of nature.
| +| ![example5](./docs/_static/ltx-video_example_00005.gif)
A woman with light skin, wearing a blue jacket and a black hat...A woman with light skin, wearing a blue jacket and a black hat with a veil, looks down and to her right, then back up as she speaks; she has brown hair styled in an updo, light brown eyebrows, and is wearing a white collared shirt under her jacket; the camera remains stationary on her face as she speaks; the background is out of focus, but shows trees and people in period clothing; the scene is captured in real-life footage.
| ![example6](./docs/_static/ltx-video_example_00006.gif)
A man in a dimly lit room talks on a vintage telephone...A man in a dimly lit room talks on a vintage telephone, hangs up, and looks down with a sad expression. He holds the black rotary phone to his right ear with his right hand, his left hand holding a rocks glass with amber liquid. He wears a brown suit jacket over a white shirt, and a gold ring on his left ring finger. His short hair is neatly combed, and he has light skin with visible wrinkles around his eyes. The camera remains stationary, focused on his face and upper body. The room is dark, lit only by a warm light source off-screen to the left, casting shadows on the wall behind him. The scene appears to be from a movie.
| ![example7](./docs/_static/ltx-video_example_00007.gif)
A prison guard unlocks and opens a cell door...A prison guard unlocks and opens a cell door to reveal a young man sitting at a table with a woman. The guard, wearing a dark blue uniform with a badge on his left chest, unlocks the cell door with a key held in his right hand and pulls it open; he has short brown hair, light skin, and a neutral expression. The young man, wearing a black and white striped shirt, sits at a table covered with a white tablecloth, facing the woman; he has short brown hair, light skin, and a neutral expression. The woman, wearing a dark blue shirt, sits opposite the young man, her face turned towards him; she has short blonde hair and light skin. The camera remains stationary, capturing the scene from a medium distance, positioned slightly to the right of the guard. The room is dimly lit, with a single light fixture illuminating the table and the two figures. The walls are made of large, grey concrete blocks, and a metal door is visible in the background. The scene is captured in real-life footage.
| ![example8](./docs/_static/ltx-video_example_00008.gif)
A woman with blood on her face and a white tank top...A woman with blood on her face and a white tank top looks down and to her right, then back up as she speaks. She has dark hair pulled back, light skin, and her face and chest are covered in blood. The camera angle is a close-up, focused on the woman's face and upper torso. The lighting is dim and blue-toned, creating a somber and intense atmosphere. The scene appears to be from a movie or TV show.
| +| ![example9](./docs/_static/ltx-video_example_00009.gif)
A man with graying hair, a beard, and a gray shirt...A man with graying hair, a beard, and a gray shirt looks down and to his right, then turns his head to the left. The camera angle is a close-up, focused on the man's face. The lighting is dim, with a greenish tint. The scene appears to be real-life footage. Step
| ![example10](./docs/_static/ltx-video_example_00010.gif)
A clear, turquoise river flows through a rocky canyon...A clear, turquoise river flows through a rocky canyon, cascading over a small waterfall and forming a pool of water at the bottom.The river is the main focus of the scene, with its clear water reflecting the surrounding trees and rocks. The canyon walls are steep and rocky, with some vegetation growing on them. The trees are mostly pine trees, with their green needles contrasting with the brown and gray rocks. The overall tone of the scene is one of peace and tranquility.
| ![example11](./docs/_static/ltx-video_example_00011.gif)
A man in a suit enters a room and speaks to two women...A man in a suit enters a room and speaks to two women sitting on a couch. The man, wearing a dark suit with a gold tie, enters the room from the left and walks towards the center of the frame. He has short gray hair, light skin, and a serious expression. He places his right hand on the back of a chair as he approaches the couch. Two women are seated on a light-colored couch in the background. The woman on the left wears a light blue sweater and has short blonde hair. The woman on the right wears a white sweater and has short blonde hair. The camera remains stationary, focusing on the man as he enters the room. The room is brightly lit, with warm tones reflecting off the walls and furniture. The scene appears to be from a film or television show.
| ![example12](./docs/_static/ltx-video_example_00012.gif)
The waves crash against the jagged rocks of the shoreline...The waves crash against the jagged rocks of the shoreline, sending spray high into the air.The rocks are a dark gray color, with sharp edges and deep crevices. The water is a clear blue-green, with white foam where the waves break against the rocks. The sky is a light gray, with a few white clouds dotting the horizon.
| +| ![example13](./docs/_static/ltx-video_example_00013.gif)
The camera pans across a cityscape of tall buildings...The camera pans across a cityscape of tall buildings with a circular building in the center. The camera moves from left to right, showing the tops of the buildings and the circular building in the center. The buildings are various shades of gray and white, and the circular building has a green roof. The camera angle is high, looking down at the city. The lighting is bright, with the sun shining from the upper left, casting shadows from the buildings. The scene is computer-generated imagery.
| ![example14](./docs/_static/ltx-video_example_00014.gif)
A man walks towards a window, looks out, and then turns around...A man walks towards a window, looks out, and then turns around. He has short, dark hair, dark skin, and is wearing a brown coat over a red and gray scarf. He walks from left to right towards a window, his gaze fixed on something outside. The camera follows him from behind at a medium distance. The room is brightly lit, with white walls and a large window covered by a white curtain. As he approaches the window, he turns his head slightly to the left, then back to the right. He then turns his entire body to the right, facing the window. The camera remains stationary as he stands in front of the window. The scene is captured in real-life footage.
| ![example15](./docs/_static/ltx-video_example_00015.gif)
Two police officers in dark blue uniforms and matching hats...Two police officers in dark blue uniforms and matching hats enter a dimly lit room through a doorway on the left side of the frame. The first officer, with short brown hair and a mustache, steps inside first, followed by his partner, who has a shaved head and a goatee. Both officers have serious expressions and maintain a steady pace as they move deeper into the room. The camera remains stationary, capturing them from a slightly low angle as they enter. The room has exposed brick walls and a corrugated metal ceiling, with a barred window visible in the background. The lighting is low-key, casting shadows on the officers' faces and emphasizing the grim atmosphere. The scene appears to be from a film or television show.
| ![example16](./docs/_static/ltx-video_example_00016.gif)
A woman with short brown hair, wearing a maroon sleeveless top...A woman with short brown hair, wearing a maroon sleeveless top and a silver necklace, walks through a room while talking, then a woman with pink hair and a white shirt appears in the doorway and yells. The first woman walks from left to right, her expression serious; she has light skin and her eyebrows are slightly furrowed. The second woman stands in the doorway, her mouth open in a yell; she has light skin and her eyes are wide. The room is dimly lit, with a bookshelf visible in the background. The camera follows the first woman as she walks, then cuts to a close-up of the second woman's face. The scene is captured in real-life footage.
| + + +# Quick Start Guide +The codebase was tested with Python 3.10.5, CUDA version 12.2, and supports PyTorch >= 2.1.2. + +## Installation + +```bash +git clone https://github.com/Lightricks/LTX-Video.git +cd LTX-Video + +# create env +python -m venv env +source env/bin/activate +python -m pip install -e .\[inference-script\] +``` + +Then, download the model from [Hugging Face](https://huggingface.co/Lightricks/LTX-Video) + +```python +from huggingface_hub import snapshot_download + +model_path = 'PATH' # The local directory to save downloaded checkpoint +snapshot_download("Lightricks/LTX-Video", local_dir=model_path, local_dir_use_symlinks=False, repo_type='model') +``` + +## Inference + +To use our model, please follow the inference code in [inference.py](./inference.py): + +#### For text-to-video generation: + +```bash +python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --height HEIGHT --width WIDTH --num_frames NUM_FRAMES --seed SEED +``` + +#### For image-to-video generation: + +```bash +python inference.py --ckpt_dir 'PATH' --prompt "PROMPT" --input_image_path IMAGE_PATH --height HEIGHT --width WIDTH --num_frames NUM_FRAMES --seed SEED +``` + +## ComfyUI Integration +To use our model with ComfyUI, please follow the instructions at [https://github.com/Lightricks/ComfyUI-LTXVideo/](). + +# Model User Guide + +## General tips: +* The model works on resolutions that are divisible by 32 and number of frames that are divisible by 8 + 1 (e.g. 257). In case the resolution or number of frames are not divisible by 32 or 8 + 1, the input will be padded with -1 and then cropped to the desired resolution and number of frames. +* The model works best on resolutions under 720 x 1280 and number of frames below 257. +* Prompts should be in English. The more elaborate the better. Good prompt looks like `The turquoise waves crash against the dark, jagged rocks of the shore, sending white foam spraying into the air. The scene is dominated by the stark contrast between the bright blue water and the dark, almost black rocks. The water is a clear, turquoise color, and the waves are capped with white foam. The rocks are dark and jagged, and they are covered in patches of green moss. The shore is lined with lush green vegetation, including trees and bushes. In the background, there are rolling hills covered in dense forest. The sky is cloudy, and the light is dim.` + +## More to come... + +# Acknowledgement + +We are grateful for the following awesome projects when implementing LTX-Video: +* [DiT](https://github.com/facebookresearch/DiT) and [PixArt-alpha](https://github.com/PixArt-alpha/PixArt-alpha): vision transformers for image generation. + + +[//]: # (## Citation) diff --git a/docs/_static/ltx-video_example_00001.gif b/docs/_static/ltx-video_example_00001.gif new file mode 100644 index 0000000..19ff700 --- /dev/null +++ b/docs/_static/ltx-video_example_00001.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b679f14a09d2321b7e34b3ecd23bc01c2cfa75c8d4214a1e59af09826003e2ec +size 7963919 diff --git a/docs/_static/ltx-video_example_00002.gif b/docs/_static/ltx-video_example_00002.gif new file mode 100644 index 0000000..03892c2 --- /dev/null +++ b/docs/_static/ltx-video_example_00002.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:336f4baec79c1bd754c7c1bf3ac0792910cc85b6a3bde15fabeb0fb0f33299ff +size 7897781 diff --git a/docs/_static/ltx-video_example_00003.gif b/docs/_static/ltx-video_example_00003.gif new file mode 100644 index 0000000..ddd889d --- /dev/null +++ b/docs/_static/ltx-video_example_00003.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ab2cb063b872d487fbbab821de7fe8157e7f87af03bd780d55116cb98fc8fc45 +size 4429543 diff --git a/docs/_static/ltx-video_example_00004.gif b/docs/_static/ltx-video_example_00004.gif new file mode 100644 index 0000000..53f2d43 --- /dev/null +++ b/docs/_static/ltx-video_example_00004.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0a599a641cc3367fab5a6dd75fc89be63208cc708a1173b2ce7bfeac7208f831 +size 6713603 diff --git a/docs/_static/ltx-video_example_00005.gif b/docs/_static/ltx-video_example_00005.gif new file mode 100644 index 0000000..58a0a4a --- /dev/null +++ b/docs/_static/ltx-video_example_00005.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:87fdb9556c1218db4b929994e9b807d1d63f4676defef5b418a4edb1ddaa8422 +size 5732587 diff --git a/docs/_static/ltx-video_example_00006.gif b/docs/_static/ltx-video_example_00006.gif new file mode 100644 index 0000000..788ab94 --- /dev/null +++ b/docs/_static/ltx-video_example_00006.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f56f3dcc84a871ab4ef1510120f7a4586c7044c5609a897d8177ae8d52eb3eae +size 4239543 diff --git a/docs/_static/ltx-video_example_00007.gif b/docs/_static/ltx-video_example_00007.gif new file mode 100644 index 0000000..d34d86f --- /dev/null +++ b/docs/_static/ltx-video_example_00007.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a08a06681334856db516e969a9ae4290acfd7550f7b970331e87d0223e282bcc +size 7829259 diff --git a/docs/_static/ltx-video_example_00008.gif b/docs/_static/ltx-video_example_00008.gif new file mode 100644 index 0000000..45f5c9e --- /dev/null +++ b/docs/_static/ltx-video_example_00008.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3242c65e11a40177c91b48d8ee18084dc4f907ffe5f11217c5f3e5aa2ca3fe36 +size 6229734 diff --git a/docs/_static/ltx-video_example_00009.gif b/docs/_static/ltx-video_example_00009.gif new file mode 100644 index 0000000..0a2a487 --- /dev/null +++ b/docs/_static/ltx-video_example_00009.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:aa1e0a2ba75c6bda530a798e8aaeb3edc19413970b99d2a67b79839cd14f2fe5 +size 6389700 diff --git a/docs/_static/ltx-video_example_00010.gif b/docs/_static/ltx-video_example_00010.gif new file mode 100644 index 0000000..999b041 --- /dev/null +++ b/docs/_static/ltx-video_example_00010.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bcf1e084e936a75eaae73a29f60935c469b1fc34eb3f5ad89483e88b3a2eaffe +size 6193172 diff --git a/docs/_static/ltx-video_example_00011.gif b/docs/_static/ltx-video_example_00011.gif new file mode 100644 index 0000000..d0274a7 --- /dev/null +++ b/docs/_static/ltx-video_example_00011.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:3e3d04f5763ecb416b3b80c3488e48c49991d80661c94e8f08dddd7b890b1b75 +size 5345673 diff --git a/docs/_static/ltx-video_example_00012.gif b/docs/_static/ltx-video_example_00012.gif new file mode 100644 index 0000000..f9f6dc7 --- /dev/null +++ b/docs/_static/ltx-video_example_00012.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:39790832fd9bff62c99a799eb4843cf99c9ab73c3f181656acbbd0d4ebf7f471 +size 7474091 diff --git a/docs/_static/ltx-video_example_00013.gif b/docs/_static/ltx-video_example_00013.gif new file mode 100644 index 0000000..a32a9ca --- /dev/null +++ b/docs/_static/ltx-video_example_00013.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:aa7eb790b43f8a55c01d1fbed4c7a7f657fb2ca78a9685833cf9cb558d2002c1 +size 9024843 diff --git a/docs/_static/ltx-video_example_00014.gif b/docs/_static/ltx-video_example_00014.gif new file mode 100644 index 0000000..adcf7c2 --- /dev/null +++ b/docs/_static/ltx-video_example_00014.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:4f7afc4b498a927dcc4e1492548db5c32fa76d117e0410d11e1e0b1929153e54 +size 7434241 diff --git a/docs/_static/ltx-video_example_00015.gif b/docs/_static/ltx-video_example_00015.gif new file mode 100644 index 0000000..e70df3c --- /dev/null +++ b/docs/_static/ltx-video_example_00015.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d897c9656e0cba89512ab9d2cbe2d2c0f2ddf907dcab5f7eadab4b96b1cb1efe +size 6556457 diff --git a/docs/_static/ltx-video_example_00016.gif b/docs/_static/ltx-video_example_00016.gif new file mode 100644 index 0000000..34474f8 --- /dev/null +++ b/docs/_static/ltx-video_example_00016.gif @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c74f35e37bba01817ca4ac01dd9195863100eb83e7cb73bbea2b53e0f69a8628 +size 7412915 diff --git a/inference.py b/inference.py new file mode 100644 index 0000000..ec82013 --- /dev/null +++ b/inference.py @@ -0,0 +1,444 @@ +import argparse +import json +import os +import random +from datetime import datetime +from pathlib import Path +from diffusers.utils import logging + +import imageio +import numpy as np +import safetensors.torch +import torch +import torch.nn.functional as F +from PIL import Image +from transformers import T5EncoderModel, T5Tokenizer + +from ltx_video.models.autoencoders.causal_video_autoencoder import ( + CausalVideoAutoencoder, +) +from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier +from ltx_video.models.transformers.transformer3d import Transformer3DModel +from ltx_video.pipelines.pipeline_ltx_video import LTXVideoPipeline +from ltx_video.schedulers.rf import RectifiedFlowScheduler +from ltx_video.utils.conditioning_method import ConditioningMethod + + +MAX_HEIGHT = 720 +MAX_WIDTH = 1280 +MAX_NUM_FRAMES = 257 + + +def load_vae(vae_dir): + vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors" + vae_config_path = vae_dir / "config.json" + with open(vae_config_path, "r") as f: + vae_config = json.load(f) + vae = CausalVideoAutoencoder.from_config(vae_config) + vae_state_dict = safetensors.torch.load_file(vae_ckpt_path) + vae.load_state_dict(vae_state_dict) + if torch.cuda.is_available(): + vae = vae.cuda() + return vae.to(torch.bfloat16) + + +def load_unet(unet_dir): + unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors" + unet_config_path = unet_dir / "config.json" + transformer_config = Transformer3DModel.load_config(unet_config_path) + transformer = Transformer3DModel.from_config(transformer_config) + unet_state_dict = safetensors.torch.load_file(unet_ckpt_path) + transformer.load_state_dict(unet_state_dict, strict=True) + if torch.cuda.is_available(): + transformer = transformer.cuda() + return transformer + + +def load_scheduler(scheduler_dir): + scheduler_config_path = scheduler_dir / "scheduler_config.json" + scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path) + return RectifiedFlowScheduler.from_config(scheduler_config) + + +def load_image_to_tensor_with_resize_and_crop( + image_path, target_height=512, target_width=768 +): + image = Image.open(image_path).convert("RGB") + input_width, input_height = image.size + aspect_ratio_target = target_width / target_height + aspect_ratio_frame = input_width / input_height + if aspect_ratio_frame > aspect_ratio_target: + new_width = int(input_height * aspect_ratio_target) + new_height = input_height + x_start = (input_width - new_width) // 2 + y_start = 0 + else: + new_width = input_width + new_height = int(input_width / aspect_ratio_target) + x_start = 0 + y_start = (input_height - new_height) // 2 + + image = image.crop((x_start, y_start, x_start + new_width, y_start + new_height)) + image = image.resize((target_width, target_height)) + frame_tensor = torch.tensor(np.array(image)).permute(2, 0, 1).float() + frame_tensor = (frame_tensor / 127.5) - 1.0 + # Create 5D tensor: (batch_size=1, channels=3, num_frames=1, height, width) + return frame_tensor.unsqueeze(0).unsqueeze(2) + + +def calculate_padding( + source_height: int, source_width: int, target_height: int, target_width: int +) -> tuple[int, int, int, int]: + + # Calculate total padding needed + pad_height = target_height - source_height + pad_width = target_width - source_width + + # Calculate padding for each side + pad_top = pad_height // 2 + pad_bottom = pad_height - pad_top # Handles odd padding + pad_left = pad_width // 2 + pad_right = pad_width - pad_left # Handles odd padding + + # Return padded tensor + # Padding format is (left, right, top, bottom) + padding = (pad_left, pad_right, pad_top, pad_bottom) + return padding + + +def convert_prompt_to_filename(text: str, max_len: int = 20) -> str: + # Remove non-letters and convert to lowercase + clean_text = "".join( + char.lower() for char in text if char.isalpha() or char.isspace() + ) + + # Split into words + words = clean_text.split() + + # Build result string keeping track of length + result = [] + current_length = 0 + + for word in words: + # Add word length plus 1 for underscore (except for first word) + new_length = current_length + len(word) + + if new_length <= max_len: + result.append(word) + current_length += len(word) + else: + break + + return "-".join(result) + + +# Generate output video name +def get_unique_filename( + base: str, + ext: str, + prompt: str, + seed: int, + resolution: tuple[int, int, int], + dir: Path, + endswith=None, + index_range=1000, +) -> Path: + base_filename = f"{base}_{convert_prompt_to_filename(prompt, max_len=30)}_{seed}_{resolution[0]}x{resolution[1]}x{resolution[2]}" + for i in range(index_range): + filename = dir / f"{base_filename}_{i}{endswith if endswith else ''}{ext}" + if not os.path.exists(filename): + return filename + raise FileExistsError( + f"Could not find a unique filename after {index_range} attempts." + ) + + +def seed_everething(seed: int): + random.seed(seed) + np.random.seed(seed) + torch.manual_seed(seed) + if torch.cuda.is_available(): + torch.cuda.manual_seed(seed) + + +def main(): + parser = argparse.ArgumentParser( + description="Load models from separate directories and run the pipeline." + ) + + # Directories + parser.add_argument( + "--ckpt_dir", + type=str, + required=True, + help="Path to the directory containing unet, vae, and scheduler subdirectories", + ) + parser.add_argument( + "--input_video_path", + type=str, + help="Path to the input video file (first frame used)", + ) + parser.add_argument( + "--input_image_path", type=str, help="Path to the input image file" + ) + parser.add_argument( + "--output_path", + type=str, + default=None, + help="Path to the folder to save output video, if None will save in outputs/ directory.", + ) + parser.add_argument("--seed", type=int, default="171198") + + # Pipeline parameters + parser.add_argument( + "--num_inference_steps", type=int, default=40, help="Number of inference steps" + ) + parser.add_argument( + "--num_images_per_prompt", + type=int, + default=1, + help="Number of images per prompt", + ) + parser.add_argument( + "--guidance_scale", + type=float, + default=3, + help="Guidance scale for the pipeline", + ) + parser.add_argument( + "--height", + type=int, + default=480, + help="Height of the output video frames. Optional if an input image provided.", + ) + parser.add_argument( + "--width", + type=int, + default=704, + help="Width of the output video frames. If None will infer from input image.", + ) + parser.add_argument( + "--num_frames", + type=int, + default=121, + help="Number of frames to generate in the output video", + ) + parser.add_argument( + "--frame_rate", type=int, default=25, help="Frame rate for the output video" + ) + + parser.add_argument( + "--bfloat16", + action="store_true", + help="Denoise in bfloat16", + ) + + # Prompts + parser.add_argument( + "--prompt", + type=str, + help="Text prompt to guide generation", + ) + parser.add_argument( + "--negative_prompt", + type=str, + default="worst quality, inconsistent motion, blurry, jittery, distorted", + help="Negative prompt for undesired features", + ) + + logger = logging.get_logger(__name__) + + args = parser.parse_args() + + logger.warning(f"Running generation with arguments: {args}") + + seed_everething(args.seed) + + output_dir = ( + Path(args.output_path) + if args.output_path + else Path(f"outputs/{datetime.today().strftime('%Y-%m-%d')}") + ) + output_dir.mkdir(parents=True, exist_ok=True) + + # Load image + if args.input_image_path: + media_items_prepad = load_image_to_tensor_with_resize_and_crop( + args.input_image_path, args.height, args.width + ) + else: + media_items_prepad = None + + height = args.height if args.height else media_items_prepad.shape[-2] + width = args.width if args.width else media_items_prepad.shape[-1] + num_frames = args.num_frames + + if height > MAX_HEIGHT or width > MAX_WIDTH or num_frames > MAX_NUM_FRAMES: + logger.warning( + f"Input resolution or number of frames {height}x{width}x{num_frames} is too big, it is suggested to use the resolution below {MAX_HEIGHT}x{MAX_WIDTH}x{MAX_NUM_FRAMES}." + ) + + # Adjust dimensions to be divisible by 32 and num_frames to be (N * 8 + 1) + height_padded = ((height - 1) // 32 + 1) * 32 + width_padded = ((width - 1) // 32 + 1) * 32 + num_frames_padded = ((num_frames - 2) // 8 + 1) * 8 + 1 + + padding = calculate_padding(height, width, height_padded, width_padded) + + logger.warning( + f"Padded dimensions: {height_padded}x{width_padded}x{num_frames_padded}" + ) + + if media_items_prepad is not None: + media_items = F.pad( + media_items_prepad, padding, mode="constant", value=-1 + ) # -1 is the value for padding since the image is normalized to -1, 1 + else: + media_items = None + + # Paths for the separate mode directories + ckpt_dir = Path(args.ckpt_dir) + unet_dir = ckpt_dir / "unet" + vae_dir = ckpt_dir / "vae" + scheduler_dir = ckpt_dir / "scheduler" + + # Load models + vae = load_vae(vae_dir) + unet = load_unet(unet_dir) + scheduler = load_scheduler(scheduler_dir) + patchifier = SymmetricPatchifier(patch_size=1) + text_encoder = T5EncoderModel.from_pretrained( + "PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder" + ) + if torch.cuda.is_available(): + text_encoder = text_encoder.to("cuda") + tokenizer = T5Tokenizer.from_pretrained( + "PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer" + ) + + if args.bfloat16 and unet.dtype != torch.bfloat16: + unet = unet.to(torch.bfloat16) + + # Use submodels for the pipeline + submodel_dict = { + "transformer": unet, + "patchifier": patchifier, + "text_encoder": text_encoder, + "tokenizer": tokenizer, + "scheduler": scheduler, + "vae": vae, + } + + pipeline = LTXVideoPipeline(**submodel_dict) + if torch.cuda.is_available(): + pipeline = pipeline.to("cuda") + + # Prepare input for the pipeline + sample = { + "prompt": args.prompt, + "prompt_attention_mask": None, + "negative_prompt": args.negative_prompt, + "negative_prompt_attention_mask": None, + "media_items": media_items, + } + + generator = torch.Generator( + device="cuda" if torch.cuda.is_available() else "cpu" + ).manual_seed(args.seed) + + images = pipeline( + num_inference_steps=args.num_inference_steps, + num_images_per_prompt=args.num_images_per_prompt, + guidance_scale=args.guidance_scale, + generator=generator, + output_type="pt", + callback_on_step_end=None, + height=height_padded, + width=width_padded, + num_frames=num_frames_padded, + frame_rate=args.frame_rate, + **sample, + is_video=True, + vae_per_channel_normalize=True, + conditioning_method=( + ConditioningMethod.FIRST_FRAME + if media_items is not None + else ConditioningMethod.UNCONDITIONAL + ), + mixed_precision=not args.bfloat16, + ).images + + # Crop the padded images to the desired resolution and number of frames + (pad_left, pad_right, pad_top, pad_bottom) = padding + pad_bottom = -pad_bottom + pad_right = -pad_right + if pad_bottom == 0: + pad_bottom = images.shape[3] + if pad_right == 0: + pad_right = images.shape[4] + images = images[:, :, :num_frames, pad_top:pad_bottom, pad_left:pad_right] + + for i in range(images.shape[0]): + # Gathering from B, C, F, H, W to C, F, H, W and then permuting to F, H, W, C + video_np = images[i].permute(1, 2, 3, 0).cpu().float().numpy() + # Unnormalizing images to [0, 255] range + video_np = (video_np * 255).astype(np.uint8) + fps = args.frame_rate + height, width = video_np.shape[1:3] + # In case a single image is generated + if video_np.shape[0] == 1: + output_filename = get_unique_filename( + f"image_output_{i}", + ".png", + prompt=args.prompt, + seed=args.seed, + resolution=(height, width, num_frames), + dir=output_dir, + ) + imageio.imwrite(output_filename, video_np[0]) + else: + if args.input_image_path: + base_filename = f"img_to_vid_{i}" + else: + base_filename = f"text_to_vid_{i}" + output_filename = get_unique_filename( + base_filename, + ".mp4", + prompt=args.prompt, + seed=args.seed, + resolution=(height, width, num_frames), + dir=output_dir, + ) + + # Write video + with imageio.get_writer(output_filename, fps=fps) as video: + for frame in video_np: + video.append_data(frame) + + # Write condition image + if args.input_image_path: + reference_image = ( + ( + media_items_prepad[0, :, 0].permute(1, 2, 0).cpu().data.numpy() + + 1.0 + ) + / 2.0 + * 255 + ) + imageio.imwrite( + get_unique_filename( + base_filename, + ".png", + prompt=args.prompt, + seed=args.seed, + resolution=(height, width, num_frames), + dir=output_dir, + endswith="_condition", + ), + reference_image.astype(np.uint8), + ) + logger.warning(f"Output saved to {output_dir}") + + +if __name__ == "__main__": + main() diff --git a/ltx_video/__init__.py b/ltx_video/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/ltx_video/models/__init__.py b/ltx_video/models/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/ltx_video/models/autoencoders/__init__.py b/ltx_video/models/autoencoders/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/ltx_video/models/autoencoders/causal_conv3d.py b/ltx_video/models/autoencoders/causal_conv3d.py new file mode 100644 index 0000000..146dea1 --- /dev/null +++ b/ltx_video/models/autoencoders/causal_conv3d.py @@ -0,0 +1,62 @@ +from typing import Tuple, Union + +import torch +import torch.nn as nn + + +class CausalConv3d(nn.Module): + def __init__( + self, + in_channels, + out_channels, + kernel_size: int = 3, + stride: Union[int, Tuple[int]] = 1, + dilation: int = 1, + groups: int = 1, + **kwargs, + ): + super().__init__() + + self.in_channels = in_channels + self.out_channels = out_channels + + kernel_size = (kernel_size, kernel_size, kernel_size) + self.time_kernel_size = kernel_size[0] + + dilation = (dilation, 1, 1) + + height_pad = kernel_size[1] // 2 + width_pad = kernel_size[2] // 2 + padding = (0, height_pad, width_pad) + + self.conv = nn.Conv3d( + in_channels, + out_channels, + kernel_size, + stride=stride, + dilation=dilation, + padding=padding, + padding_mode="zeros", + groups=groups, + ) + + def forward(self, x, causal: bool = True): + if causal: + first_frame_pad = x[:, :, :1, :, :].repeat( + (1, 1, self.time_kernel_size - 1, 1, 1) + ) + x = torch.concatenate((first_frame_pad, x), dim=2) + else: + first_frame_pad = x[:, :, :1, :, :].repeat( + (1, 1, (self.time_kernel_size - 1) // 2, 1, 1) + ) + last_frame_pad = x[:, :, -1:, :, :].repeat( + (1, 1, (self.time_kernel_size - 1) // 2, 1, 1) + ) + x = torch.concatenate((first_frame_pad, x, last_frame_pad), dim=2) + x = self.conv(x) + return x + + @property + def weight(self): + return self.conv.weight diff --git a/ltx_video/models/autoencoders/causal_video_autoencoder.py b/ltx_video/models/autoencoders/causal_video_autoencoder.py new file mode 100644 index 0000000..80c5f2e --- /dev/null +++ b/ltx_video/models/autoencoders/causal_video_autoencoder.py @@ -0,0 +1,1199 @@ +import json +import os +from functools import partial +from types import SimpleNamespace +from typing import Any, Mapping, Optional, Tuple, Union, List + +import torch +import numpy as np +from einops import rearrange +from torch import nn +from diffusers.utils import logging +import torch.nn.functional as F +from diffusers.models.embeddings import PixArtAlphaCombinedTimestepSizeEmbeddings + + +from ltx_video.models.autoencoders.conv_nd_factory import make_conv_nd, make_linear_nd +from ltx_video.models.autoencoders.pixel_norm import PixelNorm +from ltx_video.models.autoencoders.vae import AutoencoderKLWrapper +from ltx_video.models.transformers.attention import Attention + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +class CausalVideoAutoencoder(AutoencoderKLWrapper): + @classmethod + def from_pretrained( + cls, + pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], + *args, + **kwargs, + ): + config_local_path = pretrained_model_name_or_path / "config.json" + config = cls.load_config(config_local_path, **kwargs) + video_vae = cls.from_config(config) + video_vae.to(kwargs["torch_dtype"]) + + model_local_path = pretrained_model_name_or_path / "autoencoder.pth" + ckpt_state_dict = torch.load(model_local_path, map_location=torch.device("cpu")) + video_vae.load_state_dict(ckpt_state_dict) + + statistics_local_path = ( + pretrained_model_name_or_path / "per_channel_statistics.json" + ) + if statistics_local_path.exists(): + with open(statistics_local_path, "r") as file: + data = json.load(file) + transposed_data = list(zip(*data["data"])) + data_dict = { + col: torch.tensor(vals) + for col, vals in zip(data["columns"], transposed_data) + } + video_vae.register_buffer("std_of_means", data_dict["std-of-means"]) + video_vae.register_buffer( + "mean_of_means", + data_dict.get( + "mean-of-means", torch.zeros_like(data_dict["std-of-means"]) + ), + ) + + return video_vae + + @staticmethod + def from_config(config): + assert ( + config["_class_name"] == "CausalVideoAutoencoder" + ), "config must have _class_name=CausalVideoAutoencoder" + if isinstance(config["dims"], list): + config["dims"] = tuple(config["dims"]) + + assert config["dims"] in [2, 3, (2, 1)], "dims must be 2, 3 or (2, 1)" + + double_z = config.get("double_z", True) + latent_log_var = config.get( + "latent_log_var", "per_channel" if double_z else "none" + ) + use_quant_conv = config.get("use_quant_conv", True) + + if use_quant_conv and latent_log_var == "uniform": + raise ValueError("uniform latent_log_var requires use_quant_conv=False") + + encoder = Encoder( + dims=config["dims"], + in_channels=config.get("in_channels", 3), + out_channels=config["latent_channels"], + blocks=config.get("encoder_blocks", config.get("blocks")), + patch_size=config.get("patch_size", 1), + latent_log_var=latent_log_var, + norm_layer=config.get("norm_layer", "group_norm"), + ) + + decoder = Decoder( + dims=config["dims"], + in_channels=config["latent_channels"], + out_channels=config.get("out_channels", 3), + blocks=config.get("decoder_blocks", config.get("blocks")), + patch_size=config.get("patch_size", 1), + norm_layer=config.get("norm_layer", "group_norm"), + causal=config.get("causal_decoder", False), + timestep_conditioning=config.get("timestep_conditioning", False), + ) + + dims = config["dims"] + return CausalVideoAutoencoder( + encoder=encoder, + decoder=decoder, + latent_channels=config["latent_channels"], + dims=dims, + use_quant_conv=use_quant_conv, + ) + + @property + def config(self): + return SimpleNamespace( + _class_name="CausalVideoAutoencoder", + dims=self.dims, + in_channels=self.encoder.conv_in.in_channels // self.encoder.patch_size**2, + out_channels=self.decoder.conv_out.out_channels + // self.decoder.patch_size**2, + latent_channels=self.decoder.conv_in.in_channels, + encoder_blocks=self.encoder.blocks_desc, + decoder_blocks=self.decoder.blocks_desc, + scaling_factor=1.0, + norm_layer=self.encoder.norm_layer, + patch_size=self.encoder.patch_size, + latent_log_var=self.encoder.latent_log_var, + use_quant_conv=self.use_quant_conv, + causal_decoder=self.decoder.causal, + timestep_conditioning=self.decoder.timestep_conditioning, + ) + + @property + def is_video_supported(self): + """ + Check if the model supports video inputs of shape (B, C, F, H, W). Otherwise, the model only supports 2D images. + """ + return self.dims != 2 + + @property + def spatial_downscale_factor(self): + return ( + 2 + ** len( + [ + block + for block in self.encoder.blocks_desc + if block[0] in ["compress_space", "compress_all"] + ] + ) + * self.encoder.patch_size + ) + + @property + def temporal_downscale_factor(self): + return 2 ** len( + [ + block + for block in self.encoder.blocks_desc + if block[0] in ["compress_time", "compress_all"] + ] + ) + + def to_json_string(self) -> str: + import json + + return json.dumps(self.config.__dict__) + + def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True): + per_channel_statistics_prefix = "per_channel_statistics." + ckpt_state_dict = { + key: value + for key, value in state_dict.items() + if not key.startswith(per_channel_statistics_prefix) + } + + model_keys = set(name for name, _ in self.named_parameters()) + + key_mapping = { + ".resnets.": ".res_blocks.", + "downsamplers.0": "downsample", + "upsamplers.0": "upsample", + } + converted_state_dict = {} + for key, value in ckpt_state_dict.items(): + for k, v in key_mapping.items(): + key = key.replace(k, v) + + if "norm" in key and key not in model_keys: + logger.info( + f"Removing key {key} from state_dict as it is not present in the model" + ) + continue + + converted_state_dict[key] = value + + super().load_state_dict(converted_state_dict, strict=strict) + + data_dict = { + key.removeprefix(per_channel_statistics_prefix): value + for key, value in state_dict.items() + if key.startswith(per_channel_statistics_prefix) + } + if len(data_dict) > 0: + self.register_buffer("std_of_means", data_dict["std-of-means"]) + self.register_buffer( + "mean_of_means", + data_dict.get( + "mean-of-means", torch.zeros_like(data_dict["std-of-means"]) + ), + ) + + def last_layer(self): + if hasattr(self.decoder, "conv_out"): + if isinstance(self.decoder.conv_out, nn.Sequential): + last_layer = self.decoder.conv_out[-1] + else: + last_layer = self.decoder.conv_out + else: + last_layer = self.decoder.layers[-1] + return last_layer + + def set_use_tpu_flash_attention(self): + for block in self.decoder.up_blocks: + if isinstance(block, UNetMidBlock3D) and block.attention_blocks: + for attention_block in block.attention_blocks: + attention_block.set_use_tpu_flash_attention() + + +class Encoder(nn.Module): + r""" + The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation. + + Args: + dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3): + The number of dimensions to use in convolutions. + in_channels (`int`, *optional*, defaults to 3): + The number of input channels. + out_channels (`int`, *optional*, defaults to 3): + The number of output channels. + blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`): + The blocks to use. Each block is a tuple of the block name and the number of layers. + base_channels (`int`, *optional*, defaults to 128): + The number of output channels for the first convolutional layer. + norm_num_groups (`int`, *optional*, defaults to 32): + The number of groups for normalization. + patch_size (`int`, *optional*, defaults to 1): + The patch size to use. Should be a power of 2. + norm_layer (`str`, *optional*, defaults to `group_norm`): + The normalization layer to use. Can be either `group_norm` or `pixel_norm`. + latent_log_var (`str`, *optional*, defaults to `per_channel`): + The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`. + """ + + def __init__( + self, + dims: Union[int, Tuple[int, int]] = 3, + in_channels: int = 3, + out_channels: int = 3, + blocks: List[Tuple[str, int | dict]] = [("res_x", 1)], + base_channels: int = 128, + norm_num_groups: int = 32, + patch_size: Union[int, Tuple[int]] = 1, + norm_layer: str = "group_norm", # group_norm, pixel_norm + latent_log_var: str = "per_channel", + ): + super().__init__() + self.patch_size = patch_size + self.norm_layer = norm_layer + self.latent_channels = out_channels + self.latent_log_var = latent_log_var + self.blocks_desc = blocks + + in_channels = in_channels * patch_size**2 + output_channel = base_channels + + self.conv_in = make_conv_nd( + dims=dims, + in_channels=in_channels, + out_channels=output_channel, + kernel_size=3, + stride=1, + padding=1, + causal=True, + ) + + self.down_blocks = nn.ModuleList([]) + + for block_name, block_params in blocks: + input_channel = output_channel + if isinstance(block_params, int): + block_params = {"num_layers": block_params} + + if block_name == "res_x": + block = UNetMidBlock3D( + dims=dims, + in_channels=input_channel, + num_layers=block_params["num_layers"], + resnet_eps=1e-6, + resnet_groups=norm_num_groups, + norm_layer=norm_layer, + ) + elif block_name == "res_x_y": + output_channel = block_params.get("multiplier", 2) * output_channel + block = ResnetBlock3D( + dims=dims, + in_channels=input_channel, + out_channels=output_channel, + eps=1e-6, + groups=norm_num_groups, + norm_layer=norm_layer, + ) + elif block_name == "compress_time": + block = make_conv_nd( + dims=dims, + in_channels=input_channel, + out_channels=output_channel, + kernel_size=3, + stride=(2, 1, 1), + causal=True, + ) + elif block_name == "compress_space": + block = make_conv_nd( + dims=dims, + in_channels=input_channel, + out_channels=output_channel, + kernel_size=3, + stride=(1, 2, 2), + causal=True, + ) + elif block_name == "compress_all": + block = make_conv_nd( + dims=dims, + in_channels=input_channel, + out_channels=output_channel, + kernel_size=3, + stride=(2, 2, 2), + causal=True, + ) + elif block_name == "compress_all_x_y": + output_channel = block_params.get("multiplier", 2) * output_channel + block = make_conv_nd( + dims=dims, + in_channels=input_channel, + out_channels=output_channel, + kernel_size=3, + stride=(2, 2, 2), + causal=True, + ) + else: + raise ValueError(f"unknown block: {block_name}") + + self.down_blocks.append(block) + + # out + if norm_layer == "group_norm": + self.conv_norm_out = nn.GroupNorm( + num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6 + ) + elif norm_layer == "pixel_norm": + self.conv_norm_out = PixelNorm() + elif norm_layer == "layer_norm": + self.conv_norm_out = LayerNorm(output_channel, eps=1e-6) + + self.conv_act = nn.SiLU() + + conv_out_channels = out_channels + if latent_log_var == "per_channel": + conv_out_channels *= 2 + elif latent_log_var == "uniform": + conv_out_channels += 1 + elif latent_log_var != "none": + raise ValueError(f"Invalid latent_log_var: {latent_log_var}") + self.conv_out = make_conv_nd( + dims, output_channel, conv_out_channels, 3, padding=1, causal=True + ) + + self.gradient_checkpointing = False + + def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor: + r"""The forward method of the `Encoder` class.""" + + sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1) + sample = self.conv_in(sample) + + checkpoint_fn = ( + partial(torch.utils.checkpoint.checkpoint, use_reentrant=False) + if self.gradient_checkpointing and self.training + else lambda x: x + ) + + for down_block in self.down_blocks: + sample = checkpoint_fn(down_block)(sample) + + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + + if self.latent_log_var == "uniform": + last_channel = sample[:, -1:, ...] + num_dims = sample.dim() + + if num_dims == 4: + # For shape (B, C, H, W) + repeated_last_channel = last_channel.repeat( + 1, sample.shape[1] - 2, 1, 1 + ) + sample = torch.cat([sample, repeated_last_channel], dim=1) + elif num_dims == 5: + # For shape (B, C, F, H, W) + repeated_last_channel = last_channel.repeat( + 1, sample.shape[1] - 2, 1, 1, 1 + ) + sample = torch.cat([sample, repeated_last_channel], dim=1) + else: + raise ValueError(f"Invalid input shape: {sample.shape}") + + return sample + + +class Decoder(nn.Module): + r""" + The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample. + + Args: + dims (`int` or `Tuple[int, int]`, *optional*, defaults to 3): + The number of dimensions to use in convolutions. + in_channels (`int`, *optional*, defaults to 3): + The number of input channels. + out_channels (`int`, *optional*, defaults to 3): + The number of output channels. + blocks (`List[Tuple[str, int]]`, *optional*, defaults to `[("res_x", 1)]`): + The blocks to use. Each block is a tuple of the block name and the number of layers. + base_channels (`int`, *optional*, defaults to 128): + The number of output channels for the first convolutional layer. + norm_num_groups (`int`, *optional*, defaults to 32): + The number of groups for normalization. + patch_size (`int`, *optional*, defaults to 1): + The patch size to use. Should be a power of 2. + norm_layer (`str`, *optional*, defaults to `group_norm`): + The normalization layer to use. Can be either `group_norm` or `pixel_norm`. + causal (`bool`, *optional*, defaults to `True`): + Whether to use causal convolutions or not. + """ + + def __init__( + self, + dims, + in_channels: int = 3, + out_channels: int = 3, + blocks: List[Tuple[str, int | dict]] = [("res_x", 1)], + base_channels: int = 128, + layers_per_block: int = 2, + norm_num_groups: int = 32, + patch_size: int = 1, + norm_layer: str = "group_norm", + causal: bool = True, + timestep_conditioning: bool = False, + ): + super().__init__() + self.patch_size = patch_size + self.layers_per_block = layers_per_block + out_channels = out_channels * patch_size**2 + self.causal = causal + self.blocks_desc = blocks + + # Compute output channel to be product of all channel-multiplier blocks + output_channel = base_channels + for block_name, block_params in list(reversed(blocks)): + block_params = block_params if isinstance(block_params, dict) else {} + if block_name == "res_x_y": + output_channel = output_channel * block_params.get("multiplier", 2) + if block_name == "compress_all": + output_channel = output_channel * block_params.get("multiplier", 1) + + self.conv_in = make_conv_nd( + dims, + in_channels, + output_channel, + kernel_size=3, + stride=1, + padding=1, + causal=True, + ) + + self.up_blocks = nn.ModuleList([]) + + for block_name, block_params in list(reversed(blocks)): + input_channel = output_channel + if isinstance(block_params, int): + block_params = {"num_layers": block_params} + + if block_name == "res_x": + block = UNetMidBlock3D( + dims=dims, + in_channels=input_channel, + num_layers=block_params["num_layers"], + resnet_eps=1e-6, + resnet_groups=norm_num_groups, + norm_layer=norm_layer, + inject_noise=block_params.get("inject_noise", False), + timestep_conditioning=timestep_conditioning, + ) + elif block_name == "attn_res_x": + block = UNetMidBlock3D( + dims=dims, + in_channels=input_channel, + num_layers=block_params["num_layers"], + resnet_groups=norm_num_groups, + norm_layer=norm_layer, + inject_noise=block_params.get("inject_noise", False), + timestep_conditioning=timestep_conditioning, + attention_head_dim=block_params["attention_head_dim"], + ) + elif block_name == "res_x_y": + output_channel = output_channel // block_params.get("multiplier", 2) + block = ResnetBlock3D( + dims=dims, + in_channels=input_channel, + out_channels=output_channel, + eps=1e-6, + groups=norm_num_groups, + norm_layer=norm_layer, + inject_noise=block_params.get("inject_noise", False), + timestep_conditioning=False, + ) + elif block_name == "compress_time": + block = DepthToSpaceUpsample( + dims=dims, in_channels=input_channel, stride=(2, 1, 1) + ) + elif block_name == "compress_space": + block = DepthToSpaceUpsample( + dims=dims, in_channels=input_channel, stride=(1, 2, 2) + ) + elif block_name == "compress_all": + output_channel = output_channel // block_params.get("multiplier", 1) + block = DepthToSpaceUpsample( + dims=dims, + in_channels=input_channel, + stride=(2, 2, 2), + residual=block_params.get("residual", False), + out_channels_reduction_factor=block_params.get("multiplier", 1), + ) + else: + raise ValueError(f"unknown layer: {block_name}") + + self.up_blocks.append(block) + + if norm_layer == "group_norm": + self.conv_norm_out = nn.GroupNorm( + num_channels=output_channel, num_groups=norm_num_groups, eps=1e-6 + ) + elif norm_layer == "pixel_norm": + self.conv_norm_out = PixelNorm() + elif norm_layer == "layer_norm": + self.conv_norm_out = LayerNorm(output_channel, eps=1e-6) + + self.conv_act = nn.SiLU() + self.conv_out = make_conv_nd( + dims, output_channel, out_channels, 3, padding=1, causal=True + ) + + self.gradient_checkpointing = False + + self.timestep_conditioning = timestep_conditioning + + if timestep_conditioning: + self.timestep_scale_multiplier = nn.Parameter( + torch.tensor(1000.0, dtype=torch.float32) + ) + self.last_time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings( + output_channel * 2, 0 + ) + self.last_scale_shift_table = nn.Parameter( + torch.randn(2, output_channel) / output_channel**0.5 + ) + + def forward( + self, + sample: torch.FloatTensor, + target_shape, + timesteps: Optional[torch.Tensor] = None, + ) -> torch.FloatTensor: + r"""The forward method of the `Decoder` class.""" + assert target_shape is not None, "target_shape must be provided" + batch_size = sample.shape[0] + + sample = self.conv_in(sample, causal=self.causal) + + upscale_dtype = next(iter(self.up_blocks.parameters())).dtype + + checkpoint_fn = ( + partial(torch.utils.checkpoint.checkpoint, use_reentrant=False) + if self.gradient_checkpointing and self.training + else lambda x: x + ) + + sample = sample.to(upscale_dtype) + + if self.timestep_conditioning: + assert ( + timesteps is not None + ), "should pass timesteps with timestep_conditioning=True" + scaled_timesteps = timesteps * self.timestep_scale_multiplier + + for up_block in self.up_blocks: + if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D): + sample = checkpoint_fn(up_block)( + sample, causal=self.causal, timesteps=scaled_timesteps + ) + else: + sample = checkpoint_fn(up_block)(sample, causal=self.causal) + + sample = self.conv_norm_out(sample) + + if self.timestep_conditioning: + embedded_timesteps = self.last_time_embedder( + timestep=scaled_timesteps.flatten(), + resolution=None, + aspect_ratio=None, + batch_size=sample.shape[0], + hidden_dtype=sample.dtype, + ) + embedded_timesteps = embedded_timesteps.view( + batch_size, embedded_timesteps.shape[-1], 1, 1, 1 + ) + ada_values = self.last_scale_shift_table[ + None, ..., None, None, None + ] + embedded_timesteps.reshape( + batch_size, + 2, + -1, + embedded_timesteps.shape[-3], + embedded_timesteps.shape[-2], + embedded_timesteps.shape[-1], + ) + shift, scale = ada_values.unbind(dim=1) + sample = sample * (1 + scale) + shift + + sample = self.conv_act(sample) + sample = self.conv_out(sample, causal=self.causal) + + sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1) + + return sample + + +class UNetMidBlock3D(nn.Module): + """ + A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks. + + Args: + in_channels (`int`): The number of input channels. + dropout (`float`, *optional*, defaults to 0.0): The dropout rate. + num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. + resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. + resnet_groups (`int`, *optional*, defaults to 32): + The number of groups to use in the group normalization layers of the resnet blocks. + norm_layer (`str`, *optional*, defaults to `group_norm`): + The normalization layer to use. Can be either `group_norm` or `pixel_norm`. + inject_noise (`bool`, *optional*, defaults to `False`): + Whether to inject noise into the hidden states. + timestep_conditioning (`bool`, *optional*, defaults to `False`): + Whether to condition the hidden states on the timestep. + attention_head_dim (`int`, *optional*, defaults to -1): + The dimension of the attention head. If -1, no attention is used. + + Returns: + `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, + in_channels, height, width)`. + + """ + + def __init__( + self, + dims: Union[int, Tuple[int, int]], + in_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_groups: int = 32, + norm_layer: str = "group_norm", + inject_noise: bool = False, + timestep_conditioning: bool = False, + attention_head_dim: int = -1, + ): + super().__init__() + resnet_groups = ( + resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + ) + self.timestep_conditioning = timestep_conditioning + + if timestep_conditioning: + self.time_embedder = PixArtAlphaCombinedTimestepSizeEmbeddings( + in_channels * 4, 0 + ) + + self.res_blocks = nn.ModuleList( + [ + ResnetBlock3D( + dims=dims, + in_channels=in_channels, + out_channels=in_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + norm_layer=norm_layer, + inject_noise=inject_noise, + timestep_conditioning=timestep_conditioning, + ) + for _ in range(num_layers) + ] + ) + + self.attention_blocks = None + + if attention_head_dim > 0: + if attention_head_dim > in_channels: + raise ValueError( + "attention_head_dim must be less than or equal to in_channels" + ) + + self.attention_blocks = nn.ModuleList( + [ + Attention( + query_dim=in_channels, + heads=in_channels // attention_head_dim, + dim_head=attention_head_dim, + bias=True, + out_bias=True, + qk_norm="rms_norm", + residual_connection=True, + ) + for _ in range(num_layers) + ] + ) + + def forward( + self, + hidden_states: torch.FloatTensor, + causal: bool = True, + timesteps: Optional[torch.Tensor] = None, + ) -> torch.FloatTensor: + timestep_embed = None + if self.timestep_conditioning: + assert ( + timesteps is not None + ), "should pass timesteps with timestep_conditioning=True" + batch_size = hidden_states.shape[0] + timestep_embed = self.time_embedder( + timestep=timesteps.flatten(), + resolution=None, + aspect_ratio=None, + batch_size=batch_size, + hidden_dtype=hidden_states.dtype, + ) + timestep_embed = timestep_embed.view( + batch_size, timestep_embed.shape[-1], 1, 1, 1 + ) + + if self.attention_blocks: + for resnet, attention in zip(self.res_blocks, self.attention_blocks): + hidden_states = resnet( + hidden_states, causal=causal, timesteps=timestep_embed + ) + + # Reshape the hidden states to be (batch_size, frames * height * width, channel) + batch_size, channel, frames, height, width = hidden_states.shape + hidden_states = hidden_states.view( + batch_size, channel, frames * height * width + ).transpose(1, 2) + + if attention.use_tpu_flash_attention: + # Pad the second dimension to be divisible by block_k_major (block in flash attention) + seq_len = hidden_states.shape[1] + block_k_major = 512 + pad_len = (block_k_major - seq_len % block_k_major) % block_k_major + if pad_len > 0: + hidden_states = F.pad( + hidden_states, (0, 0, 0, pad_len), "constant", 0 + ) + + # Create a mask with ones for the original sequence length and zeros for the padded indexes + mask = torch.ones( + (hidden_states.shape[0], seq_len), + device=hidden_states.device, + dtype=hidden_states.dtype, + ) + if pad_len > 0: + mask = F.pad(mask, (0, pad_len), "constant", 0) + + hidden_states = attention( + hidden_states, + attention_mask=( + None if not attention.use_tpu_flash_attention else mask + ), + ) + + if attention.use_tpu_flash_attention: + # Remove the padding + if pad_len > 0: + hidden_states = hidden_states[:, :-pad_len, :] + + # Reshape the hidden states back to (batch_size, channel, frames, height, width, channel) + hidden_states = hidden_states.transpose(-1, -2).reshape( + batch_size, channel, frames, height, width + ) + else: + for resnet in self.res_blocks: + hidden_states = resnet( + hidden_states, causal=causal, timesteps=timestep_embed + ) + + return hidden_states + + +class DepthToSpaceUpsample(nn.Module): + def __init__( + self, dims, in_channels, stride, residual=False, out_channels_reduction_factor=1 + ): + super().__init__() + self.stride = stride + self.out_channels = ( + np.prod(stride) * in_channels // out_channels_reduction_factor + ) + self.conv = make_conv_nd( + dims=dims, + in_channels=in_channels, + out_channels=self.out_channels, + kernel_size=3, + stride=1, + causal=True, + ) + self.residual = residual + self.out_channels_reduction_factor = out_channels_reduction_factor + + def forward(self, x, causal: bool = True): + if self.residual: + # Reshape and duplicate the input to match the output shape + x_in = rearrange( + x, + "b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)", + p1=self.stride[0], + p2=self.stride[1], + p3=self.stride[2], + ) + num_repeat = np.prod(self.stride) // self.out_channels_reduction_factor + x_in = x_in.repeat(1, num_repeat, 1, 1, 1) + if self.stride[0] == 2: + x_in = x_in[:, :, 1:, :, :] + x = self.conv(x, causal=causal) + x = rearrange( + x, + "b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)", + p1=self.stride[0], + p2=self.stride[1], + p3=self.stride[2], + ) + if self.stride[0] == 2: + x = x[:, :, 1:, :, :] + if self.residual: + x = x + x_in + return x + + +class LayerNorm(nn.Module): + def __init__(self, dim, eps, elementwise_affine=True) -> None: + super().__init__() + self.norm = nn.LayerNorm(dim, eps=eps, elementwise_affine=elementwise_affine) + + def forward(self, x): + x = rearrange(x, "b c d h w -> b d h w c") + x = self.norm(x) + x = rearrange(x, "b d h w c -> b c d h w") + return x + + +class ResnetBlock3D(nn.Module): + r""" + A Resnet block. + + Parameters: + in_channels (`int`): The number of channels in the input. + out_channels (`int`, *optional*, default to be `None`): + The number of output channels for the first conv layer. If None, same as `in_channels`. + dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. + groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. + eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. + """ + + def __init__( + self, + dims: Union[int, Tuple[int, int]], + in_channels: int, + out_channels: Optional[int] = None, + dropout: float = 0.0, + groups: int = 32, + eps: float = 1e-6, + norm_layer: str = "group_norm", + inject_noise: bool = False, + timestep_conditioning: bool = False, + ): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.inject_noise = inject_noise + + if norm_layer == "group_norm": + self.norm1 = nn.GroupNorm( + num_groups=groups, num_channels=in_channels, eps=eps, affine=True + ) + elif norm_layer == "pixel_norm": + self.norm1 = PixelNorm() + elif norm_layer == "layer_norm": + self.norm1 = LayerNorm(in_channels, eps=eps, elementwise_affine=True) + + self.non_linearity = nn.SiLU() + + self.conv1 = make_conv_nd( + dims, + in_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1, + causal=True, + ) + + if inject_noise: + self.per_channel_scale1 = nn.Parameter(torch.zeros((in_channels, 1, 1))) + + if norm_layer == "group_norm": + self.norm2 = nn.GroupNorm( + num_groups=groups, num_channels=out_channels, eps=eps, affine=True + ) + elif norm_layer == "pixel_norm": + self.norm2 = PixelNorm() + elif norm_layer == "layer_norm": + self.norm2 = LayerNorm(out_channels, eps=eps, elementwise_affine=True) + + self.dropout = torch.nn.Dropout(dropout) + + self.conv2 = make_conv_nd( + dims, + out_channels, + out_channels, + kernel_size=3, + stride=1, + padding=1, + causal=True, + ) + + if inject_noise: + self.per_channel_scale2 = nn.Parameter(torch.zeros((in_channels, 1, 1))) + + self.conv_shortcut = ( + make_linear_nd( + dims=dims, in_channels=in_channels, out_channels=out_channels + ) + if in_channels != out_channels + else nn.Identity() + ) + + self.norm3 = ( + LayerNorm(in_channels, eps=eps, elementwise_affine=True) + if in_channels != out_channels + else nn.Identity() + ) + + self.timestep_conditioning = timestep_conditioning + + if timestep_conditioning: + self.scale_shift_table = nn.Parameter( + torch.randn(4, in_channels) / in_channels**0.5 + ) + + def _feed_spatial_noise( + self, hidden_states: torch.FloatTensor, per_channel_scale: torch.FloatTensor + ) -> torch.FloatTensor: + spatial_shape = hidden_states.shape[-2:] + device = hidden_states.device + dtype = hidden_states.dtype + + # similar to the "explicit noise inputs" method in style-gan + spatial_noise = torch.randn(spatial_shape, device=device, dtype=dtype)[None] + scaled_noise = (spatial_noise * per_channel_scale)[None, :, None, ...] + hidden_states = hidden_states + scaled_noise + + return hidden_states + + def forward( + self, + input_tensor: torch.FloatTensor, + causal: bool = True, + timesteps: Optional[torch.Tensor] = None, + ) -> torch.FloatTensor: + hidden_states = input_tensor + batch_size = hidden_states.shape[0] + + hidden_states = self.norm1(hidden_states) + if self.timestep_conditioning: + assert ( + timesteps is not None + ), "should pass timesteps with timestep_conditioning=True" + ada_values = self.scale_shift_table[ + None, ..., None, None, None + ] + timesteps.reshape( + batch_size, + 4, + -1, + timesteps.shape[-3], + timesteps.shape[-2], + timesteps.shape[-1], + ) + shift1, scale1, shift2, scale2 = ada_values.unbind(dim=1) + + hidden_states = hidden_states * (1 + scale1) + shift1 + + hidden_states = self.non_linearity(hidden_states) + + hidden_states = self.conv1(hidden_states, causal=causal) + + if self.inject_noise: + hidden_states = self._feed_spatial_noise( + hidden_states, self.per_channel_scale1 + ) + + hidden_states = self.norm2(hidden_states) + + if self.timestep_conditioning: + hidden_states = hidden_states * (1 + scale2) + shift2 + + hidden_states = self.non_linearity(hidden_states) + + hidden_states = self.dropout(hidden_states) + + hidden_states = self.conv2(hidden_states, causal=causal) + + if self.inject_noise: + hidden_states = self._feed_spatial_noise( + hidden_states, self.per_channel_scale2 + ) + + input_tensor = self.norm3(input_tensor) + + batch_size = input_tensor.shape[0] + + input_tensor = self.conv_shortcut(input_tensor) + + output_tensor = input_tensor + hidden_states + + return output_tensor + + +def patchify(x, patch_size_hw, patch_size_t=1): + if patch_size_hw == 1 and patch_size_t == 1: + return x + if x.dim() == 4: + x = rearrange( + x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw + ) + elif x.dim() == 5: + x = rearrange( + x, + "b c (f p) (h q) (w r) -> b (c p r q) f h w", + p=patch_size_t, + q=patch_size_hw, + r=patch_size_hw, + ) + else: + raise ValueError(f"Invalid input shape: {x.shape}") + + return x + + +def unpatchify(x, patch_size_hw, patch_size_t=1): + if patch_size_hw == 1 and patch_size_t == 1: + return x + + if x.dim() == 4: + x = rearrange( + x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw + ) + elif x.dim() == 5: + x = rearrange( + x, + "b (c p r q) f h w -> b c (f p) (h q) (w r)", + p=patch_size_t, + q=patch_size_hw, + r=patch_size_hw, + ) + + return x + + +def create_video_autoencoder_config( + latent_channels: int = 64, +): + encoder_blocks = [ + ("res_x", {"num_layers": 4}), + ("compress_all_x_y", {"multiplier": 3}), + ("res_x", {"num_layers": 4}), + ("compress_all_x_y", {"multiplier": 2}), + ("res_x", {"num_layers": 4}), + ("compress_all", {}), + ("res_x", {"num_layers": 3}), + ("res_x", {"num_layers": 4}), + ] + decoder_blocks = [ + ("res_x", {"num_layers": 4}), + ("compress_all", {"residual": True}), + ("res_x_y", {"multiplier": 3}), + ("res_x", {"num_layers": 3}), + ("compress_all", {"residual": True}), + ("res_x_y", {"multiplier": 2}), + ("res_x", {"num_layers": 3}), + ("compress_all", {"residual": True}), + ("res_x", {"num_layers": 3}), + ("res_x", {"num_layers": 4}), + ] + return { + "_class_name": "CausalVideoAutoencoder", + "dims": 3, + "encoder_blocks": encoder_blocks, + "decoder_blocks": decoder_blocks, + "latent_channels": latent_channels, + "norm_layer": "pixel_norm", + "patch_size": 4, + "latent_log_var": "uniform", + "use_quant_conv": False, + "causal_decoder": False, + "timestep_conditioning": True, + } + + +def test_vae_patchify_unpatchify(): + import torch + + x = torch.randn(2, 3, 8, 64, 64) + x_patched = patchify(x, patch_size_hw=4, patch_size_t=4) + x_unpatched = unpatchify(x_patched, patch_size_hw=4, patch_size_t=4) + assert torch.allclose(x, x_unpatched) + + +def demo_video_autoencoder_forward_backward(): + # Configuration for the VideoAutoencoder + config = create_video_autoencoder_config() + + # Instantiate the VideoAutoencoder with the specified configuration + video_autoencoder = CausalVideoAutoencoder.from_config(config) + + print(video_autoencoder) + video_autoencoder.eval() + # Print the total number of parameters in the video autoencoder + total_params = sum(p.numel() for p in video_autoencoder.parameters()) + print(f"Total number of parameters in VideoAutoencoder: {total_params:,}") + + # Create a mock input tensor simulating a batch of videos + # Shape: (batch_size, channels, depth, height, width) + # E.g., 4 videos, each with 3 color channels, 16 frames, and 64x64 pixels per frame + input_videos = torch.randn(2, 3, 17, 64, 64) + + # Forward pass: encode and decode the input videos + latent = video_autoencoder.encode(input_videos).latent_dist.mode() + print(f"input shape={input_videos.shape}") + print(f"latent shape={latent.shape}") + + timesteps = torch.ones(input_videos.shape[0]) * 0.1 + reconstructed_videos = video_autoencoder.decode( + latent, target_shape=input_videos.shape, timesteps=timesteps + ).sample + + print(f"reconstructed shape={reconstructed_videos.shape}") + + # Validate that single image gets treated the same way as first frame + input_image = input_videos[:, :, :1, :, :] + image_latent = video_autoencoder.encode(input_image).latent_dist.mode() + _ = video_autoencoder.decode( + image_latent, target_shape=image_latent.shape, timesteps=timesteps + ).sample + + # first_frame_latent = latent[:, :, :1, :, :] + + # assert torch.allclose(image_latent, first_frame_latent, atol=1e-6) + # assert torch.allclose(reconstructed_image, reconstructed_videos[:, :, :1, :, :], atol=1e-6) + # assert (image_latent == first_frame_latent).all() + # assert (reconstructed_image == reconstructed_videos[:, :, :1, :, :]).all() + + # Calculate the loss (e.g., mean squared error) + loss = torch.nn.functional.mse_loss(input_videos, reconstructed_videos) + + # Perform backward pass + loss.backward() + + print(f"Demo completed with loss: {loss.item()}") + + +# Ensure to call the demo function to execute the forward and backward pass +if __name__ == "__main__": + demo_video_autoencoder_forward_backward() diff --git a/ltx_video/models/autoencoders/conv_nd_factory.py b/ltx_video/models/autoencoders/conv_nd_factory.py new file mode 100644 index 0000000..5bc0c2e --- /dev/null +++ b/ltx_video/models/autoencoders/conv_nd_factory.py @@ -0,0 +1,82 @@ +from typing import Tuple, Union + +import torch + +from ltx_video.models.autoencoders.dual_conv3d import DualConv3d +from ltx_video.models.autoencoders.causal_conv3d import CausalConv3d + + +def make_conv_nd( + dims: Union[int, Tuple[int, int]], + in_channels: int, + out_channels: int, + kernel_size: int, + stride=1, + padding=0, + dilation=1, + groups=1, + bias=True, + causal=False, +): + if dims == 2: + return torch.nn.Conv2d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding, + dilation=dilation, + groups=groups, + bias=bias, + ) + elif dims == 3: + if causal: + return CausalConv3d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding, + dilation=dilation, + groups=groups, + bias=bias, + ) + return torch.nn.Conv3d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding, + dilation=dilation, + groups=groups, + bias=bias, + ) + elif dims == (2, 1): + return DualConv3d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding, + bias=bias, + ) + else: + raise ValueError(f"unsupported dimensions: {dims}") + + +def make_linear_nd( + dims: int, + in_channels: int, + out_channels: int, + bias=True, +): + if dims == 2: + return torch.nn.Conv2d( + in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias + ) + elif dims == 3 or dims == (2, 1): + return torch.nn.Conv3d( + in_channels=in_channels, out_channels=out_channels, kernel_size=1, bias=bias + ) + else: + raise ValueError(f"unsupported dimensions: {dims}") diff --git a/ltx_video/models/autoencoders/dual_conv3d.py b/ltx_video/models/autoencoders/dual_conv3d.py new file mode 100644 index 0000000..6bd54c0 --- /dev/null +++ b/ltx_video/models/autoencoders/dual_conv3d.py @@ -0,0 +1,195 @@ +import math +from typing import Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +from einops import rearrange + + +class DualConv3d(nn.Module): + def __init__( + self, + in_channels, + out_channels, + kernel_size, + stride: Union[int, Tuple[int, int, int]] = 1, + padding: Union[int, Tuple[int, int, int]] = 0, + dilation: Union[int, Tuple[int, int, int]] = 1, + groups=1, + bias=True, + ): + super(DualConv3d, self).__init__() + + self.in_channels = in_channels + self.out_channels = out_channels + # Ensure kernel_size, stride, padding, and dilation are tuples of length 3 + if isinstance(kernel_size, int): + kernel_size = (kernel_size, kernel_size, kernel_size) + if kernel_size == (1, 1, 1): + raise ValueError( + "kernel_size must be greater than 1. Use make_linear_nd instead." + ) + if isinstance(stride, int): + stride = (stride, stride, stride) + if isinstance(padding, int): + padding = (padding, padding, padding) + if isinstance(dilation, int): + dilation = (dilation, dilation, dilation) + + # Set parameters for convolutions + self.groups = groups + self.bias = bias + + # Define the size of the channels after the first convolution + intermediate_channels = ( + out_channels if in_channels < out_channels else in_channels + ) + + # Define parameters for the first convolution + self.weight1 = nn.Parameter( + torch.Tensor( + intermediate_channels, + in_channels // groups, + 1, + kernel_size[1], + kernel_size[2], + ) + ) + self.stride1 = (1, stride[1], stride[2]) + self.padding1 = (0, padding[1], padding[2]) + self.dilation1 = (1, dilation[1], dilation[2]) + if bias: + self.bias1 = nn.Parameter(torch.Tensor(intermediate_channels)) + else: + self.register_parameter("bias1", None) + + # Define parameters for the second convolution + self.weight2 = nn.Parameter( + torch.Tensor( + out_channels, intermediate_channels // groups, kernel_size[0], 1, 1 + ) + ) + self.stride2 = (stride[0], 1, 1) + self.padding2 = (padding[0], 0, 0) + self.dilation2 = (dilation[0], 1, 1) + if bias: + self.bias2 = nn.Parameter(torch.Tensor(out_channels)) + else: + self.register_parameter("bias2", None) + + # Initialize weights and biases + self.reset_parameters() + + def reset_parameters(self): + nn.init.kaiming_uniform_(self.weight1, a=math.sqrt(5)) + nn.init.kaiming_uniform_(self.weight2, a=math.sqrt(5)) + if self.bias: + fan_in1, _ = nn.init._calculate_fan_in_and_fan_out(self.weight1) + bound1 = 1 / math.sqrt(fan_in1) + nn.init.uniform_(self.bias1, -bound1, bound1) + fan_in2, _ = nn.init._calculate_fan_in_and_fan_out(self.weight2) + bound2 = 1 / math.sqrt(fan_in2) + nn.init.uniform_(self.bias2, -bound2, bound2) + + def forward(self, x, use_conv3d=False, skip_time_conv=False): + if use_conv3d: + return self.forward_with_3d(x=x, skip_time_conv=skip_time_conv) + else: + return self.forward_with_2d(x=x, skip_time_conv=skip_time_conv) + + def forward_with_3d(self, x, skip_time_conv): + # First convolution + x = F.conv3d( + x, + self.weight1, + self.bias1, + self.stride1, + self.padding1, + self.dilation1, + self.groups, + ) + + if skip_time_conv: + return x + + # Second convolution + x = F.conv3d( + x, + self.weight2, + self.bias2, + self.stride2, + self.padding2, + self.dilation2, + self.groups, + ) + + return x + + def forward_with_2d(self, x, skip_time_conv): + b, c, d, h, w = x.shape + + # First 2D convolution + x = rearrange(x, "b c d h w -> (b d) c h w") + # Squeeze the depth dimension out of weight1 since it's 1 + weight1 = self.weight1.squeeze(2) + # Select stride, padding, and dilation for the 2D convolution + stride1 = (self.stride1[1], self.stride1[2]) + padding1 = (self.padding1[1], self.padding1[2]) + dilation1 = (self.dilation1[1], self.dilation1[2]) + x = F.conv2d(x, weight1, self.bias1, stride1, padding1, dilation1, self.groups) + + _, _, h, w = x.shape + + if skip_time_conv: + x = rearrange(x, "(b d) c h w -> b c d h w", b=b) + return x + + # Second convolution which is essentially treated as a 1D convolution across the 'd' dimension + x = rearrange(x, "(b d) c h w -> (b h w) c d", b=b) + + # Reshape weight2 to match the expected dimensions for conv1d + weight2 = self.weight2.squeeze(-1).squeeze(-1) + # Use only the relevant dimension for stride, padding, and dilation for the 1D convolution + stride2 = self.stride2[0] + padding2 = self.padding2[0] + dilation2 = self.dilation2[0] + x = F.conv1d(x, weight2, self.bias2, stride2, padding2, dilation2, self.groups) + x = rearrange(x, "(b h w) c d -> b c d h w", b=b, h=h, w=w) + + return x + + @property + def weight(self): + return self.weight2 + + +def test_dual_conv3d_consistency(): + # Initialize parameters + in_channels = 3 + out_channels = 5 + kernel_size = (3, 3, 3) + stride = (2, 2, 2) + padding = (1, 1, 1) + + # Create an instance of the DualConv3d class + dual_conv3d = DualConv3d( + in_channels=in_channels, + out_channels=out_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding, + bias=True, + ) + + # Example input tensor + test_input = torch.randn(1, 3, 10, 10, 10) + + # Perform forward passes with both 3D and 2D settings + output_conv3d = dual_conv3d(test_input, use_conv3d=True) + output_2d = dual_conv3d(test_input, use_conv3d=False) + + # Assert that the outputs from both methods are sufficiently close + assert torch.allclose( + output_conv3d, output_2d, atol=1e-6 + ), "Outputs are not consistent between 3D and 2D convolutions." diff --git a/ltx_video/models/autoencoders/pixel_norm.py b/ltx_video/models/autoencoders/pixel_norm.py new file mode 100644 index 0000000..9bc3ea6 --- /dev/null +++ b/ltx_video/models/autoencoders/pixel_norm.py @@ -0,0 +1,12 @@ +import torch +from torch import nn + + +class PixelNorm(nn.Module): + def __init__(self, dim=1, eps=1e-8): + super(PixelNorm, self).__init__() + self.dim = dim + self.eps = eps + + def forward(self, x): + return x / torch.sqrt(torch.mean(x**2, dim=self.dim, keepdim=True) + self.eps) diff --git a/ltx_video/models/autoencoders/vae.py b/ltx_video/models/autoencoders/vae.py new file mode 100644 index 0000000..a67ac7a --- /dev/null +++ b/ltx_video/models/autoencoders/vae.py @@ -0,0 +1,343 @@ +from typing import Optional, Union + +import torch +import inspect +import math +import torch.nn as nn +from diffusers import ConfigMixin, ModelMixin +from diffusers.models.autoencoders.vae import ( + DecoderOutput, + DiagonalGaussianDistribution, +) +from diffusers.models.modeling_outputs import AutoencoderKLOutput +from ltx_video.models.autoencoders.conv_nd_factory import make_conv_nd + + +class AutoencoderKLWrapper(ModelMixin, ConfigMixin): + """Variational Autoencoder (VAE) model with KL loss. + + VAE from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma and Max Welling. + This model is a wrapper around an encoder and a decoder, and it adds a KL loss term to the reconstruction loss. + + Args: + encoder (`nn.Module`): + Encoder module. + decoder (`nn.Module`): + Decoder module. + latent_channels (`int`, *optional*, defaults to 4): + Number of latent channels. + """ + + def __init__( + self, + encoder: nn.Module, + decoder: nn.Module, + latent_channels: int = 4, + dims: int = 2, + sample_size=512, + use_quant_conv: bool = True, + ): + super().__init__() + + # pass init params to Encoder + self.encoder = encoder + self.use_quant_conv = use_quant_conv + + # pass init params to Decoder + quant_dims = 2 if dims == 2 else 3 + self.decoder = decoder + if use_quant_conv: + self.quant_conv = make_conv_nd( + quant_dims, 2 * latent_channels, 2 * latent_channels, 1 + ) + self.post_quant_conv = make_conv_nd( + quant_dims, latent_channels, latent_channels, 1 + ) + else: + self.quant_conv = nn.Identity() + self.post_quant_conv = nn.Identity() + self.use_z_tiling = False + self.use_hw_tiling = False + self.dims = dims + self.z_sample_size = 1 + + self.decoder_params = inspect.signature(self.decoder.forward).parameters + + # only relevant if vae tiling is enabled + self.set_tiling_params(sample_size=sample_size, overlap_factor=0.25) + + def set_tiling_params(self, sample_size: int = 512, overlap_factor: float = 0.25): + self.tile_sample_min_size = sample_size + num_blocks = len(self.encoder.down_blocks) + self.tile_latent_min_size = int(sample_size / (2 ** (num_blocks - 1))) + self.tile_overlap_factor = overlap_factor + + def enable_z_tiling(self, z_sample_size: int = 8): + r""" + Enable tiling during VAE decoding. + + When this option is enabled, the VAE will split the input tensor in tiles to compute decoding in several + steps. This is useful to save some memory and allow larger batch sizes. + """ + self.use_z_tiling = z_sample_size > 1 + self.z_sample_size = z_sample_size + assert ( + z_sample_size % 8 == 0 or z_sample_size == 1 + ), f"z_sample_size must be a multiple of 8 or 1. Got {z_sample_size}." + + def disable_z_tiling(self): + r""" + Disable tiling during VAE decoding. If `use_tiling` was previously invoked, this method will go back to computing + decoding in one step. + """ + self.use_z_tiling = False + + def enable_hw_tiling(self): + r""" + Enable tiling during VAE decoding along the height and width dimension. + """ + self.use_hw_tiling = True + + def disable_hw_tiling(self): + r""" + Disable tiling during VAE decoding along the height and width dimension. + """ + self.use_hw_tiling = False + + def _hw_tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True): + overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) + blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) + row_limit = self.tile_latent_min_size - blend_extent + + # Split the image into 512x512 tiles and encode them separately. + rows = [] + for i in range(0, x.shape[3], overlap_size): + row = [] + for j in range(0, x.shape[4], overlap_size): + tile = x[ + :, + :, + :, + i : i + self.tile_sample_min_size, + j : j + self.tile_sample_min_size, + ] + tile = self.encoder(tile) + tile = self.quant_conv(tile) + row.append(tile) + rows.append(row) + result_rows = [] + for i, row in enumerate(rows): + result_row = [] + for j, tile in enumerate(row): + # blend the above tile and the left tile + # to the current tile and add the current tile to the result row + if i > 0: + tile = self.blend_v(rows[i - 1][j], tile, blend_extent) + if j > 0: + tile = self.blend_h(row[j - 1], tile, blend_extent) + result_row.append(tile[:, :, :, :row_limit, :row_limit]) + result_rows.append(torch.cat(result_row, dim=4)) + + moments = torch.cat(result_rows, dim=3) + return moments + + def blend_z( + self, a: torch.Tensor, b: torch.Tensor, blend_extent: int + ) -> torch.Tensor: + blend_extent = min(a.shape[2], b.shape[2], blend_extent) + for z in range(blend_extent): + b[:, :, z, :, :] = a[:, :, -blend_extent + z, :, :] * ( + 1 - z / blend_extent + ) + b[:, :, z, :, :] * (z / blend_extent) + return b + + def blend_v( + self, a: torch.Tensor, b: torch.Tensor, blend_extent: int + ) -> torch.Tensor: + blend_extent = min(a.shape[3], b.shape[3], blend_extent) + for y in range(blend_extent): + b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * ( + 1 - y / blend_extent + ) + b[:, :, :, y, :] * (y / blend_extent) + return b + + def blend_h( + self, a: torch.Tensor, b: torch.Tensor, blend_extent: int + ) -> torch.Tensor: + blend_extent = min(a.shape[4], b.shape[4], blend_extent) + for x in range(blend_extent): + b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * ( + 1 - x / blend_extent + ) + b[:, :, :, :, x] * (x / blend_extent) + return b + + def _hw_tiled_decode(self, z: torch.FloatTensor, target_shape): + overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) + blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor) + row_limit = self.tile_sample_min_size - blend_extent + tile_target_shape = ( + *target_shape[:3], + self.tile_sample_min_size, + self.tile_sample_min_size, + ) + # Split z into overlapping 64x64 tiles and decode them separately. + # The tiles have an overlap to avoid seams between tiles. + rows = [] + for i in range(0, z.shape[3], overlap_size): + row = [] + for j in range(0, z.shape[4], overlap_size): + tile = z[ + :, + :, + :, + i : i + self.tile_latent_min_size, + j : j + self.tile_latent_min_size, + ] + tile = self.post_quant_conv(tile) + decoded = self.decoder(tile, target_shape=tile_target_shape) + row.append(decoded) + rows.append(row) + result_rows = [] + for i, row in enumerate(rows): + result_row = [] + for j, tile in enumerate(row): + # blend the above tile and the left tile + # to the current tile and add the current tile to the result row + if i > 0: + tile = self.blend_v(rows[i - 1][j], tile, blend_extent) + if j > 0: + tile = self.blend_h(row[j - 1], tile, blend_extent) + result_row.append(tile[:, :, :, :row_limit, :row_limit]) + result_rows.append(torch.cat(result_row, dim=4)) + + dec = torch.cat(result_rows, dim=3) + return dec + + def encode( + self, z: torch.FloatTensor, return_dict: bool = True + ) -> Union[DecoderOutput, torch.FloatTensor]: + if self.use_z_tiling and z.shape[2] > self.z_sample_size > 1: + num_splits = z.shape[2] // self.z_sample_size + sizes = [self.z_sample_size] * num_splits + sizes = ( + sizes + [z.shape[2] - sum(sizes)] + if z.shape[2] - sum(sizes) > 0 + else sizes + ) + tiles = z.split(sizes, dim=2) + moments_tiles = [ + ( + self._hw_tiled_encode(z_tile, return_dict) + if self.use_hw_tiling + else self._encode(z_tile) + ) + for z_tile in tiles + ] + moments = torch.cat(moments_tiles, dim=2) + + else: + moments = ( + self._hw_tiled_encode(z, return_dict) + if self.use_hw_tiling + else self._encode(z) + ) + + posterior = DiagonalGaussianDistribution(moments) + if not return_dict: + return (posterior,) + + return AutoencoderKLOutput(latent_dist=posterior) + + def _encode(self, x: torch.FloatTensor) -> AutoencoderKLOutput: + h = self.encoder(x) + moments = self.quant_conv(h) + return moments + + def _decode( + self, + z: torch.FloatTensor, + target_shape=None, + timesteps: Optional[torch.Tensor] = None, + ) -> Union[DecoderOutput, torch.FloatTensor]: + z = self.post_quant_conv(z) + if "timesteps" in self.decoder_params: + dec = self.decoder(z, target_shape=target_shape, timesteps=timesteps) + else: + dec = self.decoder(z, target_shape=target_shape) + return dec + + def decode( + self, + z: torch.FloatTensor, + return_dict: bool = True, + target_shape=None, + timesteps: Optional[torch.Tensor] = None, + ) -> Union[DecoderOutput, torch.FloatTensor]: + assert target_shape is not None, "target_shape must be provided for decoding" + if self.use_z_tiling and z.shape[2] > self.z_sample_size > 1: + reduction_factor = int( + self.encoder.patch_size_t + * 2 + ** ( + len(self.encoder.down_blocks) + - 1 + - math.sqrt(self.encoder.patch_size) + ) + ) + split_size = self.z_sample_size // reduction_factor + num_splits = z.shape[2] // split_size + + # copy target shape, and divide frame dimension (=2) by the context size + target_shape_split = list(target_shape) + target_shape_split[2] = target_shape[2] // num_splits + + decoded_tiles = [ + ( + self._hw_tiled_decode(z_tile, target_shape_split) + if self.use_hw_tiling + else self._decode(z_tile, target_shape=target_shape_split) + ) + for z_tile in torch.tensor_split(z, num_splits, dim=2) + ] + decoded = torch.cat(decoded_tiles, dim=2) + else: + decoded = ( + self._hw_tiled_decode(z, target_shape) + if self.use_hw_tiling + else self._decode(z, target_shape=target_shape, timesteps=timesteps) + ) + + if not return_dict: + return (decoded,) + + return DecoderOutput(sample=decoded) + + def forward( + self, + sample: torch.FloatTensor, + sample_posterior: bool = False, + return_dict: bool = True, + generator: Optional[torch.Generator] = None, + ) -> Union[DecoderOutput, torch.FloatTensor]: + r""" + Args: + sample (`torch.FloatTensor`): Input sample. + sample_posterior (`bool`, *optional*, defaults to `False`): + Whether to sample from the posterior. + return_dict (`bool`, *optional*, defaults to `True`): + Whether to return a [`DecoderOutput`] instead of a plain tuple. + generator (`torch.Generator`, *optional*): + Generator used to sample from the posterior. + """ + x = sample + posterior = self.encode(x).latent_dist + if sample_posterior: + z = posterior.sample(generator=generator) + else: + z = posterior.mode() + dec = self.decode(z, target_shape=sample.shape).sample + + if not return_dict: + return (dec,) + + return DecoderOutput(sample=dec) diff --git a/ltx_video/models/autoencoders/vae_encode.py b/ltx_video/models/autoencoders/vae_encode.py new file mode 100644 index 0000000..3b8b15b --- /dev/null +++ b/ltx_video/models/autoencoders/vae_encode.py @@ -0,0 +1,195 @@ +import torch +from diffusers import AutoencoderKL +from einops import rearrange +from torch import Tensor + + +from ltx_video.models.autoencoders.causal_video_autoencoder import ( + CausalVideoAutoencoder, +) +from ltx_video.models.autoencoders.video_autoencoder import ( + Downsample3D, + VideoAutoencoder, +) + +try: + import torch_xla.core.xla_model as xm +except ImportError: + xm = None + + +def vae_encode( + media_items: Tensor, + vae: AutoencoderKL, + split_size: int = 1, + vae_per_channel_normalize=False, +) -> Tensor: + """ + Encodes media items (images or videos) into latent representations using a specified VAE model. + The function supports processing batches of images or video frames and can handle the processing + in smaller sub-batches if needed. + + Args: + media_items (Tensor): A torch Tensor containing the media items to encode. The expected + shape is (batch_size, channels, height, width) for images or (batch_size, channels, + frames, height, width) for videos. + vae (AutoencoderKL): An instance of the `AutoencoderKL` class from the `diffusers` library, + pre-configured and loaded with the appropriate model weights. + split_size (int, optional): The number of sub-batches to split the input batch into for encoding. + If set to more than 1, the input media items are processed in smaller batches according to + this value. Defaults to 1, which processes all items in a single batch. + + Returns: + Tensor: A torch Tensor of the encoded latent representations. The shape of the tensor is adjusted + to match the input shape, scaled by the model's configuration. + + Examples: + >>> import torch + >>> from diffusers import AutoencoderKL + >>> vae = AutoencoderKL.from_pretrained('your-model-name') + >>> images = torch.rand(10, 3, 8 256, 256) # Example tensor with 10 videos of 8 frames. + >>> latents = vae_encode(images, vae) + >>> print(latents.shape) # Output shape will depend on the model's latent configuration. + + Note: + In case of a video, the function encodes the media item frame-by frame. + """ + is_video_shaped = media_items.dim() == 5 + batch_size, channels = media_items.shape[0:2] + + if channels != 3: + raise ValueError(f"Expects tensors with 3 channels, got {channels}.") + + if is_video_shaped and not isinstance( + vae, (VideoAutoencoder, CausalVideoAutoencoder) + ): + media_items = rearrange(media_items, "b c n h w -> (b n) c h w") + if split_size > 1: + if len(media_items) % split_size != 0: + raise ValueError( + "Error: The batch size must be divisible by 'train.vae_bs_split" + ) + encode_bs = len(media_items) // split_size + # latents = [vae.encode(image_batch).latent_dist.sample() for image_batch in media_items.split(encode_bs)] + latents = [] + if media_items.device.type == "xla": + xm.mark_step() + for image_batch in media_items.split(encode_bs): + latents.append(vae.encode(image_batch).latent_dist.sample()) + if media_items.device.type == "xla": + xm.mark_step() + latents = torch.cat(latents, dim=0) + else: + latents = vae.encode(media_items).latent_dist.sample() + + latents = normalize_latents(latents, vae, vae_per_channel_normalize) + if is_video_shaped and not isinstance( + vae, (VideoAutoencoder, CausalVideoAutoencoder) + ): + latents = rearrange(latents, "(b n) c h w -> b c n h w", b=batch_size) + return latents + + +def vae_decode( + latents: Tensor, + vae: AutoencoderKL, + is_video: bool = True, + split_size: int = 1, + vae_per_channel_normalize=False, +) -> Tensor: + is_video_shaped = latents.dim() == 5 + batch_size = latents.shape[0] + + if is_video_shaped and not isinstance( + vae, (VideoAutoencoder, CausalVideoAutoencoder) + ): + latents = rearrange(latents, "b c n h w -> (b n) c h w") + if split_size > 1: + if len(latents) % split_size != 0: + raise ValueError( + "Error: The batch size must be divisible by 'train.vae_bs_split" + ) + encode_bs = len(latents) // split_size + image_batch = [ + _run_decoder(latent_batch, vae, is_video, vae_per_channel_normalize) + for latent_batch in latents.split(encode_bs) + ] + images = torch.cat(image_batch, dim=0) + else: + images = _run_decoder(latents, vae, is_video, vae_per_channel_normalize) + + if is_video_shaped and not isinstance( + vae, (VideoAutoencoder, CausalVideoAutoencoder) + ): + images = rearrange(images, "(b n) c h w -> b c n h w", b=batch_size) + return images + + +def _run_decoder( + latents: Tensor, vae: AutoencoderKL, is_video: bool, vae_per_channel_normalize=False +) -> Tensor: + if isinstance(vae, (VideoAutoencoder, CausalVideoAutoencoder)): + *_, fl, hl, wl = latents.shape + temporal_scale, spatial_scale, _ = get_vae_size_scale_factor(vae) + latents = latents.to(vae.dtype) + image = vae.decode( + un_normalize_latents(latents, vae, vae_per_channel_normalize), + return_dict=False, + target_shape=( + 1, + 3, + fl * temporal_scale if is_video else 1, + hl * spatial_scale, + wl * spatial_scale, + ), + )[0] + else: + image = vae.decode( + un_normalize_latents(latents, vae, vae_per_channel_normalize), + return_dict=False, + )[0] + return image + + +def get_vae_size_scale_factor(vae: AutoencoderKL) -> float: + if isinstance(vae, CausalVideoAutoencoder): + spatial = vae.spatial_downscale_factor + temporal = vae.temporal_downscale_factor + else: + down_blocks = len( + [ + block + for block in vae.encoder.down_blocks + if isinstance(block.downsample, Downsample3D) + ] + ) + spatial = vae.config.patch_size * 2**down_blocks + temporal = ( + vae.config.patch_size_t * 2**down_blocks + if isinstance(vae, VideoAutoencoder) + else 1 + ) + + return (temporal, spatial, spatial) + + +def normalize_latents( + latents: Tensor, vae: AutoencoderKL, vae_per_channel_normalize: bool = False +) -> Tensor: + return ( + (latents - vae.mean_of_means.to(latents.dtype).view(1, -1, 1, 1, 1)) + / vae.std_of_means.to(latents.dtype).view(1, -1, 1, 1, 1) + if vae_per_channel_normalize + else latents * vae.config.scaling_factor + ) + + +def un_normalize_latents( + latents: Tensor, vae: AutoencoderKL, vae_per_channel_normalize: bool = False +) -> Tensor: + return ( + latents * vae.std_of_means.to(latents.dtype).view(1, -1, 1, 1, 1) + + vae.mean_of_means.to(latents.dtype).view(1, -1, 1, 1, 1) + if vae_per_channel_normalize + else latents / vae.config.scaling_factor + ) diff --git a/ltx_video/models/autoencoders/video_autoencoder.py b/ltx_video/models/autoencoders/video_autoencoder.py new file mode 100644 index 0000000..3c7926c --- /dev/null +++ b/ltx_video/models/autoencoders/video_autoencoder.py @@ -0,0 +1,1045 @@ +import json +import os +from functools import partial +from types import SimpleNamespace +from typing import Any, Mapping, Optional, Tuple, Union + +import torch +from einops import rearrange +from torch import nn +from torch.nn import functional + +from diffusers.utils import logging + +from ltx_video.utils.torch_utils import Identity +from ltx_video.models.autoencoders.conv_nd_factory import make_conv_nd, make_linear_nd +from ltx_video.models.autoencoders.pixel_norm import PixelNorm +from ltx_video.models.autoencoders.vae import AutoencoderKLWrapper + +logger = logging.get_logger(__name__) + + +class VideoAutoencoder(AutoencoderKLWrapper): + @classmethod + def from_pretrained( + cls, + pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], + *args, + **kwargs, + ): + config_local_path = pretrained_model_name_or_path / "config.json" + config = cls.load_config(config_local_path, **kwargs) + video_vae = cls.from_config(config) + video_vae.to(kwargs["torch_dtype"]) + + model_local_path = pretrained_model_name_or_path / "autoencoder.pth" + ckpt_state_dict = torch.load(model_local_path) + video_vae.load_state_dict(ckpt_state_dict) + + statistics_local_path = ( + pretrained_model_name_or_path / "per_channel_statistics.json" + ) + if statistics_local_path.exists(): + with open(statistics_local_path, "r") as file: + data = json.load(file) + transposed_data = list(zip(*data["data"])) + data_dict = { + col: torch.tensor(vals) + for col, vals in zip(data["columns"], transposed_data) + } + video_vae.register_buffer("std_of_means", data_dict["std-of-means"]) + video_vae.register_buffer( + "mean_of_means", + data_dict.get( + "mean-of-means", torch.zeros_like(data_dict["std-of-means"]) + ), + ) + + return video_vae + + @staticmethod + def from_config(config): + assert ( + config["_class_name"] == "VideoAutoencoder" + ), "config must have _class_name=VideoAutoencoder" + if isinstance(config["dims"], list): + config["dims"] = tuple(config["dims"]) + + assert config["dims"] in [2, 3, (2, 1)], "dims must be 2, 3 or (2, 1)" + + double_z = config.get("double_z", True) + latent_log_var = config.get( + "latent_log_var", "per_channel" if double_z else "none" + ) + use_quant_conv = config.get("use_quant_conv", True) + + if use_quant_conv and latent_log_var == "uniform": + raise ValueError("uniform latent_log_var requires use_quant_conv=False") + + encoder = Encoder( + dims=config["dims"], + in_channels=config.get("in_channels", 3), + out_channels=config["latent_channels"], + block_out_channels=config["block_out_channels"], + patch_size=config.get("patch_size", 1), + latent_log_var=latent_log_var, + norm_layer=config.get("norm_layer", "group_norm"), + patch_size_t=config.get("patch_size_t", config.get("patch_size", 1)), + add_channel_padding=config.get("add_channel_padding", False), + ) + + decoder = Decoder( + dims=config["dims"], + in_channels=config["latent_channels"], + out_channels=config.get("out_channels", 3), + block_out_channels=config["block_out_channels"], + patch_size=config.get("patch_size", 1), + norm_layer=config.get("norm_layer", "group_norm"), + patch_size_t=config.get("patch_size_t", config.get("patch_size", 1)), + add_channel_padding=config.get("add_channel_padding", False), + ) + + dims = config["dims"] + return VideoAutoencoder( + encoder=encoder, + decoder=decoder, + latent_channels=config["latent_channels"], + dims=dims, + use_quant_conv=use_quant_conv, + ) + + @property + def config(self): + return SimpleNamespace( + _class_name="VideoAutoencoder", + dims=self.dims, + in_channels=self.encoder.conv_in.in_channels + // (self.encoder.patch_size_t * self.encoder.patch_size**2), + out_channels=self.decoder.conv_out.out_channels + // (self.decoder.patch_size_t * self.decoder.patch_size**2), + latent_channels=self.decoder.conv_in.in_channels, + block_out_channels=[ + self.encoder.down_blocks[i].res_blocks[-1].conv1.out_channels + for i in range(len(self.encoder.down_blocks)) + ], + scaling_factor=1.0, + norm_layer=self.encoder.norm_layer, + patch_size=self.encoder.patch_size, + latent_log_var=self.encoder.latent_log_var, + use_quant_conv=self.use_quant_conv, + patch_size_t=self.encoder.patch_size_t, + add_channel_padding=self.encoder.add_channel_padding, + ) + + @property + def is_video_supported(self): + """ + Check if the model supports video inputs of shape (B, C, F, H, W). Otherwise, the model only supports 2D images. + """ + return self.dims != 2 + + @property + def downscale_factor(self): + return self.encoder.downsample_factor + + def to_json_string(self) -> str: + import json + + return json.dumps(self.config.__dict__) + + def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True): + model_keys = set(name for name, _ in self.named_parameters()) + + key_mapping = { + ".resnets.": ".res_blocks.", + "downsamplers.0": "downsample", + "upsamplers.0": "upsample", + } + + converted_state_dict = {} + for key, value in state_dict.items(): + for k, v in key_mapping.items(): + key = key.replace(k, v) + + if "norm" in key and key not in model_keys: + logger.info( + f"Removing key {key} from state_dict as it is not present in the model" + ) + continue + + converted_state_dict[key] = value + + super().load_state_dict(converted_state_dict, strict=strict) + + def last_layer(self): + if hasattr(self.decoder, "conv_out"): + if isinstance(self.decoder.conv_out, nn.Sequential): + last_layer = self.decoder.conv_out[-1] + else: + last_layer = self.decoder.conv_out + else: + last_layer = self.decoder.layers[-1] + return last_layer + + +class Encoder(nn.Module): + r""" + The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation. + + Args: + in_channels (`int`, *optional*, defaults to 3): + The number of input channels. + out_channels (`int`, *optional*, defaults to 3): + The number of output channels. + block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): + The number of output channels for each block. + layers_per_block (`int`, *optional*, defaults to 2): + The number of layers per block. + norm_num_groups (`int`, *optional*, defaults to 32): + The number of groups for normalization. + patch_size (`int`, *optional*, defaults to 1): + The patch size to use. Should be a power of 2. + norm_layer (`str`, *optional*, defaults to `group_norm`): + The normalization layer to use. Can be either `group_norm` or `pixel_norm`. + latent_log_var (`str`, *optional*, defaults to `per_channel`): + The number of channels for the log variance. Can be either `per_channel`, `uniform`, or `none`. + """ + + def __init__( + self, + dims: Union[int, Tuple[int, int]] = 3, + in_channels: int = 3, + out_channels: int = 3, + block_out_channels: Tuple[int, ...] = (64,), + layers_per_block: int = 2, + norm_num_groups: int = 32, + patch_size: Union[int, Tuple[int]] = 1, + norm_layer: str = "group_norm", # group_norm, pixel_norm + latent_log_var: str = "per_channel", + patch_size_t: Optional[int] = None, + add_channel_padding: Optional[bool] = False, + ): + super().__init__() + self.patch_size = patch_size + self.patch_size_t = patch_size_t if patch_size_t is not None else patch_size + self.add_channel_padding = add_channel_padding + self.layers_per_block = layers_per_block + self.norm_layer = norm_layer + self.latent_channels = out_channels + self.latent_log_var = latent_log_var + if add_channel_padding: + in_channels = in_channels * self.patch_size**3 + else: + in_channels = in_channels * self.patch_size_t * self.patch_size**2 + self.in_channels = in_channels + output_channel = block_out_channels[0] + + self.conv_in = make_conv_nd( + dims=dims, + in_channels=in_channels, + out_channels=output_channel, + kernel_size=3, + stride=1, + padding=1, + ) + + self.down_blocks = nn.ModuleList([]) + + for i in range(len(block_out_channels)): + input_channel = output_channel + output_channel = block_out_channels[i] + is_final_block = i == len(block_out_channels) - 1 + + down_block = DownEncoderBlock3D( + dims=dims, + in_channels=input_channel, + out_channels=output_channel, + num_layers=self.layers_per_block, + add_downsample=not is_final_block and 2**i >= patch_size, + resnet_eps=1e-6, + downsample_padding=0, + resnet_groups=norm_num_groups, + norm_layer=norm_layer, + ) + self.down_blocks.append(down_block) + + self.mid_block = UNetMidBlock3D( + dims=dims, + in_channels=block_out_channels[-1], + num_layers=self.layers_per_block, + resnet_eps=1e-6, + resnet_groups=norm_num_groups, + norm_layer=norm_layer, + ) + + # out + if norm_layer == "group_norm": + self.conv_norm_out = nn.GroupNorm( + num_channels=block_out_channels[-1], + num_groups=norm_num_groups, + eps=1e-6, + ) + elif norm_layer == "pixel_norm": + self.conv_norm_out = PixelNorm() + self.conv_act = nn.SiLU() + + conv_out_channels = out_channels + if latent_log_var == "per_channel": + conv_out_channels *= 2 + elif latent_log_var == "uniform": + conv_out_channels += 1 + elif latent_log_var != "none": + raise ValueError(f"Invalid latent_log_var: {latent_log_var}") + self.conv_out = make_conv_nd( + dims, block_out_channels[-1], conv_out_channels, 3, padding=1 + ) + + self.gradient_checkpointing = False + + @property + def downscale_factor(self): + return ( + 2 + ** len( + [ + block + for block in self.down_blocks + if isinstance(block.downsample, Downsample3D) + ] + ) + * self.patch_size + ) + + def forward( + self, sample: torch.FloatTensor, return_features=False + ) -> torch.FloatTensor: + r"""The forward method of the `Encoder` class.""" + + downsample_in_time = sample.shape[2] != 1 + + # patchify + patch_size_t = self.patch_size_t if downsample_in_time else 1 + sample = patchify( + sample, + patch_size_hw=self.patch_size, + patch_size_t=patch_size_t, + add_channel_padding=self.add_channel_padding, + ) + + sample = self.conv_in(sample) + + checkpoint_fn = ( + partial(torch.utils.checkpoint.checkpoint, use_reentrant=False) + if self.gradient_checkpointing and self.training + else lambda x: x + ) + + if return_features: + features = [] + for down_block in self.down_blocks: + sample = checkpoint_fn(down_block)( + sample, downsample_in_time=downsample_in_time + ) + if return_features: + features.append(sample) + + sample = checkpoint_fn(self.mid_block)(sample) + + # post-process + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + + if self.latent_log_var == "uniform": + last_channel = sample[:, -1:, ...] + num_dims = sample.dim() + + if num_dims == 4: + # For shape (B, C, H, W) + repeated_last_channel = last_channel.repeat( + 1, sample.shape[1] - 2, 1, 1 + ) + sample = torch.cat([sample, repeated_last_channel], dim=1) + elif num_dims == 5: + # For shape (B, C, F, H, W) + repeated_last_channel = last_channel.repeat( + 1, sample.shape[1] - 2, 1, 1, 1 + ) + sample = torch.cat([sample, repeated_last_channel], dim=1) + else: + raise ValueError(f"Invalid input shape: {sample.shape}") + + if return_features: + features.append(sample[:, : self.latent_channels, ...]) + return sample, features + return sample + + +class Decoder(nn.Module): + r""" + The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample. + + Args: + in_channels (`int`, *optional*, defaults to 3): + The number of input channels. + out_channels (`int`, *optional*, defaults to 3): + The number of output channels. + block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): + The number of output channels for each block. + layers_per_block (`int`, *optional*, defaults to 2): + The number of layers per block. + norm_num_groups (`int`, *optional*, defaults to 32): + The number of groups for normalization. + patch_size (`int`, *optional*, defaults to 1): + The patch size to use. Should be a power of 2. + norm_layer (`str`, *optional*, defaults to `group_norm`): + The normalization layer to use. Can be either `group_norm` or `pixel_norm`. + """ + + def __init__( + self, + dims, + in_channels: int = 3, + out_channels: int = 3, + block_out_channels: Tuple[int, ...] = (64,), + layers_per_block: int = 2, + norm_num_groups: int = 32, + patch_size: int = 1, + norm_layer: str = "group_norm", + patch_size_t: Optional[int] = None, + add_channel_padding: Optional[bool] = False, + ): + super().__init__() + self.patch_size = patch_size + self.patch_size_t = patch_size_t if patch_size_t is not None else patch_size + self.add_channel_padding = add_channel_padding + self.layers_per_block = layers_per_block + if add_channel_padding: + out_channels = out_channels * self.patch_size**3 + else: + out_channels = out_channels * self.patch_size_t * self.patch_size**2 + self.out_channels = out_channels + + self.conv_in = make_conv_nd( + dims, + in_channels, + block_out_channels[-1], + kernel_size=3, + stride=1, + padding=1, + ) + + self.mid_block = None + self.up_blocks = nn.ModuleList([]) + + self.mid_block = UNetMidBlock3D( + dims=dims, + in_channels=block_out_channels[-1], + num_layers=self.layers_per_block, + resnet_eps=1e-6, + resnet_groups=norm_num_groups, + norm_layer=norm_layer, + ) + + reversed_block_out_channels = list(reversed(block_out_channels)) + output_channel = reversed_block_out_channels[0] + for i in range(len(reversed_block_out_channels)): + prev_output_channel = output_channel + output_channel = reversed_block_out_channels[i] + + is_final_block = i == len(block_out_channels) - 1 + + up_block = UpDecoderBlock3D( + dims=dims, + num_layers=self.layers_per_block + 1, + in_channels=prev_output_channel, + out_channels=output_channel, + add_upsample=not is_final_block + and 2 ** (len(block_out_channels) - i - 1) > patch_size, + resnet_eps=1e-6, + resnet_groups=norm_num_groups, + norm_layer=norm_layer, + ) + self.up_blocks.append(up_block) + + if norm_layer == "group_norm": + self.conv_norm_out = nn.GroupNorm( + num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6 + ) + elif norm_layer == "pixel_norm": + self.conv_norm_out = PixelNorm() + + self.conv_act = nn.SiLU() + self.conv_out = make_conv_nd( + dims, block_out_channels[0], out_channels, 3, padding=1 + ) + + self.gradient_checkpointing = False + + def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor: + r"""The forward method of the `Decoder` class.""" + assert target_shape is not None, "target_shape must be provided" + upsample_in_time = sample.shape[2] < target_shape[2] + + sample = self.conv_in(sample) + + upscale_dtype = next(iter(self.up_blocks.parameters())).dtype + + checkpoint_fn = ( + partial(torch.utils.checkpoint.checkpoint, use_reentrant=False) + if self.gradient_checkpointing and self.training + else lambda x: x + ) + + sample = checkpoint_fn(self.mid_block)(sample) + sample = sample.to(upscale_dtype) + + for up_block in self.up_blocks: + sample = checkpoint_fn(up_block)(sample, upsample_in_time=upsample_in_time) + + # post-process + sample = self.conv_norm_out(sample) + sample = self.conv_act(sample) + sample = self.conv_out(sample) + + # un-patchify + patch_size_t = self.patch_size_t if upsample_in_time else 1 + sample = unpatchify( + sample, + patch_size_hw=self.patch_size, + patch_size_t=patch_size_t, + add_channel_padding=self.add_channel_padding, + ) + + return sample + + +class DownEncoderBlock3D(nn.Module): + def __init__( + self, + dims: Union[int, Tuple[int, int]], + in_channels: int, + out_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_groups: int = 32, + add_downsample: bool = True, + downsample_padding: int = 1, + norm_layer: str = "group_norm", + ): + super().__init__() + res_blocks = [] + + for i in range(num_layers): + in_channels = in_channels if i == 0 else out_channels + res_blocks.append( + ResnetBlock3D( + dims=dims, + in_channels=in_channels, + out_channels=out_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + norm_layer=norm_layer, + ) + ) + + self.res_blocks = nn.ModuleList(res_blocks) + + if add_downsample: + self.downsample = Downsample3D( + dims, + out_channels, + out_channels=out_channels, + padding=downsample_padding, + ) + else: + self.downsample = Identity() + + def forward( + self, hidden_states: torch.FloatTensor, downsample_in_time + ) -> torch.FloatTensor: + for resnet in self.res_blocks: + hidden_states = resnet(hidden_states) + + hidden_states = self.downsample( + hidden_states, downsample_in_time=downsample_in_time + ) + + return hidden_states + + +class UNetMidBlock3D(nn.Module): + """ + A 3D UNet mid-block [`UNetMidBlock3D`] with multiple residual blocks. + + Args: + in_channels (`int`): The number of input channels. + dropout (`float`, *optional*, defaults to 0.0): The dropout rate. + num_layers (`int`, *optional*, defaults to 1): The number of residual blocks. + resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks. + resnet_groups (`int`, *optional*, defaults to 32): + The number of groups to use in the group normalization layers of the resnet blocks. + + Returns: + `torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size, + in_channels, height, width)`. + + """ + + def __init__( + self, + dims: Union[int, Tuple[int, int]], + in_channels: int, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_groups: int = 32, + norm_layer: str = "group_norm", + ): + super().__init__() + resnet_groups = ( + resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) + ) + + self.res_blocks = nn.ModuleList( + [ + ResnetBlock3D( + dims=dims, + in_channels=in_channels, + out_channels=in_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + norm_layer=norm_layer, + ) + for _ in range(num_layers) + ] + ) + + def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor: + for resnet in self.res_blocks: + hidden_states = resnet(hidden_states) + + return hidden_states + + +class UpDecoderBlock3D(nn.Module): + def __init__( + self, + dims: Union[int, Tuple[int, int]], + in_channels: int, + out_channels: int, + resolution_idx: Optional[int] = None, + dropout: float = 0.0, + num_layers: int = 1, + resnet_eps: float = 1e-6, + resnet_groups: int = 32, + add_upsample: bool = True, + norm_layer: str = "group_norm", + ): + super().__init__() + res_blocks = [] + + for i in range(num_layers): + input_channels = in_channels if i == 0 else out_channels + + res_blocks.append( + ResnetBlock3D( + dims=dims, + in_channels=input_channels, + out_channels=out_channels, + eps=resnet_eps, + groups=resnet_groups, + dropout=dropout, + norm_layer=norm_layer, + ) + ) + + self.res_blocks = nn.ModuleList(res_blocks) + + if add_upsample: + self.upsample = Upsample3D( + dims=dims, channels=out_channels, out_channels=out_channels + ) + else: + self.upsample = Identity() + + self.resolution_idx = resolution_idx + + def forward( + self, hidden_states: torch.FloatTensor, upsample_in_time=True + ) -> torch.FloatTensor: + for resnet in self.res_blocks: + hidden_states = resnet(hidden_states) + + hidden_states = self.upsample(hidden_states, upsample_in_time=upsample_in_time) + + return hidden_states + + +class ResnetBlock3D(nn.Module): + r""" + A Resnet block. + + Parameters: + in_channels (`int`): The number of channels in the input. + out_channels (`int`, *optional*, default to be `None`): + The number of output channels for the first conv layer. If None, same as `in_channels`. + dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. + groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. + eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. + """ + + def __init__( + self, + dims: Union[int, Tuple[int, int]], + in_channels: int, + out_channels: Optional[int] = None, + conv_shortcut: bool = False, + dropout: float = 0.0, + groups: int = 32, + eps: float = 1e-6, + norm_layer: str = "group_norm", + ): + super().__init__() + self.in_channels = in_channels + out_channels = in_channels if out_channels is None else out_channels + self.out_channels = out_channels + self.use_conv_shortcut = conv_shortcut + + if norm_layer == "group_norm": + self.norm1 = torch.nn.GroupNorm( + num_groups=groups, num_channels=in_channels, eps=eps, affine=True + ) + elif norm_layer == "pixel_norm": + self.norm1 = PixelNorm() + + self.non_linearity = nn.SiLU() + + self.conv1 = make_conv_nd( + dims, in_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + + if norm_layer == "group_norm": + self.norm2 = torch.nn.GroupNorm( + num_groups=groups, num_channels=out_channels, eps=eps, affine=True + ) + elif norm_layer == "pixel_norm": + self.norm2 = PixelNorm() + + self.dropout = torch.nn.Dropout(dropout) + + self.conv2 = make_conv_nd( + dims, out_channels, out_channels, kernel_size=3, stride=1, padding=1 + ) + + self.conv_shortcut = ( + make_linear_nd( + dims=dims, in_channels=in_channels, out_channels=out_channels + ) + if in_channels != out_channels + else nn.Identity() + ) + + def forward( + self, + input_tensor: torch.FloatTensor, + ) -> torch.FloatTensor: + hidden_states = input_tensor + + hidden_states = self.norm1(hidden_states) + + hidden_states = self.non_linearity(hidden_states) + + hidden_states = self.conv1(hidden_states) + + hidden_states = self.norm2(hidden_states) + + hidden_states = self.non_linearity(hidden_states) + + hidden_states = self.dropout(hidden_states) + + hidden_states = self.conv2(hidden_states) + + input_tensor = self.conv_shortcut(input_tensor) + + output_tensor = input_tensor + hidden_states + + return output_tensor + + +class Downsample3D(nn.Module): + def __init__( + self, + dims, + in_channels: int, + out_channels: int, + kernel_size: int = 3, + padding: int = 1, + ): + super().__init__() + stride: int = 2 + self.padding = padding + self.in_channels = in_channels + self.dims = dims + self.conv = make_conv_nd( + dims=dims, + in_channels=in_channels, + out_channels=out_channels, + kernel_size=kernel_size, + stride=stride, + padding=padding, + ) + + def forward(self, x, downsample_in_time=True): + conv = self.conv + if self.padding == 0: + if self.dims == 2: + padding = (0, 1, 0, 1) + else: + padding = (0, 1, 0, 1, 0, 1 if downsample_in_time else 0) + + x = functional.pad(x, padding, mode="constant", value=0) + + if self.dims == (2, 1) and not downsample_in_time: + return conv(x, skip_time_conv=True) + + return conv(x) + + +class Upsample3D(nn.Module): + """ + An upsampling layer for 3D tensors of shape (B, C, D, H, W). + + :param channels: channels in the inputs and outputs. + """ + + def __init__(self, dims, channels, out_channels=None): + super().__init__() + self.dims = dims + self.channels = channels + self.out_channels = out_channels or channels + self.conv = make_conv_nd( + dims, channels, out_channels, kernel_size=3, padding=1, bias=True + ) + + def forward(self, x, upsample_in_time): + if self.dims == 2: + x = functional.interpolate( + x, (x.shape[2] * 2, x.shape[3] * 2), mode="nearest" + ) + else: + time_scale_factor = 2 if upsample_in_time else 1 + # print("before:", x.shape) + b, c, d, h, w = x.shape + x = rearrange(x, "b c d h w -> (b d) c h w") + # height and width interpolate + x = functional.interpolate( + x, (x.shape[2] * 2, x.shape[3] * 2), mode="nearest" + ) + _, _, h, w = x.shape + + if not upsample_in_time and self.dims == (2, 1): + x = rearrange(x, "(b d) c h w -> b c d h w ", b=b, h=h, w=w) + return self.conv(x, skip_time_conv=True) + + # Second ** upsampling ** which is essentially treated as a 1D convolution across the 'd' dimension + x = rearrange(x, "(b d) c h w -> (b h w) c 1 d", b=b) + + # (b h w) c 1 d + new_d = x.shape[-1] * time_scale_factor + x = functional.interpolate(x, (1, new_d), mode="nearest") + # (b h w) c 1 new_d + x = rearrange( + x, "(b h w) c 1 new_d -> b c new_d h w", b=b, h=h, w=w, new_d=new_d + ) + # b c d h w + + # x = functional.interpolate( + # x, (x.shape[2] * time_scale_factor, x.shape[3] * 2, x.shape[4] * 2), mode="nearest" + # ) + # print("after:", x.shape) + + return self.conv(x) + + +def patchify(x, patch_size_hw, patch_size_t=1, add_channel_padding=False): + if patch_size_hw == 1 and patch_size_t == 1: + return x + if x.dim() == 4: + x = rearrange( + x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size_hw, r=patch_size_hw + ) + elif x.dim() == 5: + x = rearrange( + x, + "b c (f p) (h q) (w r) -> b (c p r q) f h w", + p=patch_size_t, + q=patch_size_hw, + r=patch_size_hw, + ) + else: + raise ValueError(f"Invalid input shape: {x.shape}") + + if ( + (x.dim() == 5) + and (patch_size_hw > patch_size_t) + and (patch_size_t > 1 or add_channel_padding) + ): + channels_to_pad = x.shape[1] * (patch_size_hw // patch_size_t) - x.shape[1] + padding_zeros = torch.zeros( + x.shape[0], + channels_to_pad, + x.shape[2], + x.shape[3], + x.shape[4], + device=x.device, + dtype=x.dtype, + ) + x = torch.cat([padding_zeros, x], dim=1) + + return x + + +def unpatchify(x, patch_size_hw, patch_size_t=1, add_channel_padding=False): + if patch_size_hw == 1 and patch_size_t == 1: + return x + + if ( + (x.dim() == 5) + and (patch_size_hw > patch_size_t) + and (patch_size_t > 1 or add_channel_padding) + ): + channels_to_keep = int(x.shape[1] * (patch_size_t / patch_size_hw)) + x = x[:, :channels_to_keep, :, :, :] + + if x.dim() == 4: + x = rearrange( + x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size_hw, r=patch_size_hw + ) + elif x.dim() == 5: + x = rearrange( + x, + "b (c p r q) f h w -> b c (f p) (h q) (w r)", + p=patch_size_t, + q=patch_size_hw, + r=patch_size_hw, + ) + + return x + + +def create_video_autoencoder_config( + latent_channels: int = 4, +): + config = { + "_class_name": "VideoAutoencoder", + "dims": ( + 2, + 1, + ), # 2 for Conv2, 3 for Conv3d, (2, 1) for Conv2d followed by Conv1d + "in_channels": 3, # Number of input color channels (e.g., RGB) + "out_channels": 3, # Number of output color channels + "latent_channels": latent_channels, # Number of channels in the latent space representation + "block_out_channels": [ + 128, + 256, + 512, + 512, + ], # Number of output channels of each encoder / decoder inner block + "patch_size": 1, + } + + return config + + +def create_video_autoencoder_pathify4x4x4_config( + latent_channels: int = 4, +): + config = { + "_class_name": "VideoAutoencoder", + "dims": ( + 2, + 1, + ), # 2 for Conv2, 3 for Conv3d, (2, 1) for Conv2d followed by Conv1d + "in_channels": 3, # Number of input color channels (e.g., RGB) + "out_channels": 3, # Number of output color channels + "latent_channels": latent_channels, # Number of channels in the latent space representation + "block_out_channels": [512] + * 4, # Number of output channels of each encoder / decoder inner block + "patch_size": 4, + "latent_log_var": "uniform", + } + + return config + + +def create_video_autoencoder_pathify4x4_config( + latent_channels: int = 4, +): + config = { + "_class_name": "VideoAutoencoder", + "dims": 2, # 2 for Conv2, 3 for Conv3d, (2, 1) for Conv2d followed by Conv1d + "in_channels": 3, # Number of input color channels (e.g., RGB) + "out_channels": 3, # Number of output color channels + "latent_channels": latent_channels, # Number of channels in the latent space representation + "block_out_channels": [512] + * 4, # Number of output channels of each encoder / decoder inner block + "patch_size": 4, + "norm_layer": "pixel_norm", + } + + return config + + +def test_vae_patchify_unpatchify(): + import torch + + x = torch.randn(2, 3, 8, 64, 64) + x_patched = patchify(x, patch_size_hw=4, patch_size_t=4) + x_unpatched = unpatchify(x_patched, patch_size_hw=4, patch_size_t=4) + assert torch.allclose(x, x_unpatched) + + +def demo_video_autoencoder_forward_backward(): + # Configuration for the VideoAutoencoder + config = create_video_autoencoder_pathify4x4x4_config() + + # Instantiate the VideoAutoencoder with the specified configuration + video_autoencoder = VideoAutoencoder.from_config(config) + + print(video_autoencoder) + + # Print the total number of parameters in the video autoencoder + total_params = sum(p.numel() for p in video_autoencoder.parameters()) + print(f"Total number of parameters in VideoAutoencoder: {total_params:,}") + + # Create a mock input tensor simulating a batch of videos + # Shape: (batch_size, channels, depth, height, width) + # E.g., 4 videos, each with 3 color channels, 16 frames, and 64x64 pixels per frame + input_videos = torch.randn(2, 3, 8, 64, 64) + + # Forward pass: encode and decode the input videos + latent = video_autoencoder.encode(input_videos).latent_dist.mode() + print(f"input shape={input_videos.shape}") + print(f"latent shape={latent.shape}") + reconstructed_videos = video_autoencoder.decode( + latent, target_shape=input_videos.shape + ).sample + + print(f"reconstructed shape={reconstructed_videos.shape}") + + # Calculate the loss (e.g., mean squared error) + loss = torch.nn.functional.mse_loss(input_videos, reconstructed_videos) + + # Perform backward pass + loss.backward() + + print(f"Demo completed with loss: {loss.item()}") + + +# Ensure to call the demo function to execute the forward and backward pass +if __name__ == "__main__": + demo_video_autoencoder_forward_backward() diff --git a/ltx_video/models/transformers/__init__.py b/ltx_video/models/transformers/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/ltx_video/models/transformers/attention.py b/ltx_video/models/transformers/attention.py new file mode 100644 index 0000000..e31e8b9 --- /dev/null +++ b/ltx_video/models/transformers/attention.py @@ -0,0 +1,1206 @@ +import inspect +from importlib import import_module +from typing import Any, Dict, Optional, Tuple + +import torch +import torch.nn.functional as F +from diffusers.models.activations import GEGLU, GELU, ApproximateGELU +from diffusers.models.attention import _chunked_feed_forward +from diffusers.models.attention_processor import ( + LoRAAttnAddedKVProcessor, + LoRAAttnProcessor, + LoRAAttnProcessor2_0, + LoRAXFormersAttnProcessor, + SpatialNorm, +) +from diffusers.models.lora import LoRACompatibleLinear +from diffusers.models.normalization import RMSNorm +from diffusers.utils import deprecate, logging +from diffusers.utils.torch_utils import maybe_allow_in_graph +from einops import rearrange +from torch import nn + +try: + from torch_xla.experimental.custom_kernel import flash_attention +except ImportError: + # workaround for automatic tests. Currently this function is manually patched + # to the torch_xla lib on setup of container + pass + +# code adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py + +logger = logging.get_logger(__name__) + + +@maybe_allow_in_graph +class BasicTransformerBlock(nn.Module): + r""" + A basic Transformer block. + + Parameters: + dim (`int`): The number of channels in the input and output. + num_attention_heads (`int`): The number of heads to use for multi-head attention. + attention_head_dim (`int`): The number of channels in each head. + dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. + cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. + activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. + num_embeds_ada_norm (: + obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. + attention_bias (: + obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. + only_cross_attention (`bool`, *optional*): + Whether to use only cross-attention layers. In this case two cross attention layers are used. + double_self_attention (`bool`, *optional*): + Whether to use two self-attention layers. In this case no cross attention layers are used. + upcast_attention (`bool`, *optional*): + Whether to upcast the attention computation to float32. This is useful for mixed precision training. + norm_elementwise_affine (`bool`, *optional*, defaults to `True`): + Whether to use learnable elementwise affine parameters for normalization. + qk_norm (`str`, *optional*, defaults to None): + Set to 'layer_norm' or `rms_norm` to perform query and key normalization. + adaptive_norm (`str`, *optional*, defaults to `"single_scale_shift"`): + The type of adaptive norm to use. Can be `"single_scale_shift"`, `"single_scale"` or "none". + standardization_norm (`str`, *optional*, defaults to `"layer_norm"`): + The type of pre-normalization to use. Can be `"layer_norm"` or `"rms_norm"`. + final_dropout (`bool` *optional*, defaults to False): + Whether to apply a final dropout after the last feed-forward layer. + attention_type (`str`, *optional*, defaults to `"default"`): + The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. + positional_embeddings (`str`, *optional*, defaults to `None`): + The type of positional embeddings to apply to. + num_positional_embeddings (`int`, *optional*, defaults to `None`): + The maximum number of positional embeddings to apply. + """ + + def __init__( + self, + dim: int, + num_attention_heads: int, + attention_head_dim: int, + dropout=0.0, + cross_attention_dim: Optional[int] = None, + activation_fn: str = "geglu", + num_embeds_ada_norm: Optional[int] = None, # pylint: disable=unused-argument + attention_bias: bool = False, + only_cross_attention: bool = False, + double_self_attention: bool = False, + upcast_attention: bool = False, + norm_elementwise_affine: bool = True, + adaptive_norm: str = "single_scale_shift", # 'single_scale_shift', 'single_scale' or 'none' + standardization_norm: str = "layer_norm", # 'layer_norm' or 'rms_norm' + norm_eps: float = 1e-5, + qk_norm: Optional[str] = None, + final_dropout: bool = False, + attention_type: str = "default", # pylint: disable=unused-argument + ff_inner_dim: Optional[int] = None, + ff_bias: bool = True, + attention_out_bias: bool = True, + use_tpu_flash_attention: bool = False, + use_rope: bool = False, + ): + super().__init__() + self.only_cross_attention = only_cross_attention + self.use_tpu_flash_attention = use_tpu_flash_attention + self.adaptive_norm = adaptive_norm + + assert standardization_norm in ["layer_norm", "rms_norm"] + assert adaptive_norm in ["single_scale_shift", "single_scale", "none"] + + make_norm_layer = ( + nn.LayerNorm if standardization_norm == "layer_norm" else RMSNorm + ) + + # Define 3 blocks. Each block has its own normalization layer. + # 1. Self-Attn + self.norm1 = make_norm_layer( + dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps + ) + + self.attn1 = Attention( + query_dim=dim, + heads=num_attention_heads, + dim_head=attention_head_dim, + dropout=dropout, + bias=attention_bias, + cross_attention_dim=cross_attention_dim if only_cross_attention else None, + upcast_attention=upcast_attention, + out_bias=attention_out_bias, + use_tpu_flash_attention=use_tpu_flash_attention, + qk_norm=qk_norm, + use_rope=use_rope, + ) + + # 2. Cross-Attn + if cross_attention_dim is not None or double_self_attention: + self.attn2 = Attention( + query_dim=dim, + cross_attention_dim=( + cross_attention_dim if not double_self_attention else None + ), + heads=num_attention_heads, + dim_head=attention_head_dim, + dropout=dropout, + bias=attention_bias, + upcast_attention=upcast_attention, + out_bias=attention_out_bias, + use_tpu_flash_attention=use_tpu_flash_attention, + qk_norm=qk_norm, + use_rope=use_rope, + ) # is self-attn if encoder_hidden_states is none + + if adaptive_norm == "none": + self.attn2_norm = make_norm_layer( + dim, norm_eps, norm_elementwise_affine + ) + else: + self.attn2 = None + self.attn2_norm = None + + self.norm2 = make_norm_layer(dim, norm_eps, norm_elementwise_affine) + + # 3. Feed-forward + self.ff = FeedForward( + dim, + dropout=dropout, + activation_fn=activation_fn, + final_dropout=final_dropout, + inner_dim=ff_inner_dim, + bias=ff_bias, + ) + + # 5. Scale-shift for PixArt-Alpha. + if adaptive_norm != "none": + num_ada_params = 4 if adaptive_norm == "single_scale" else 6 + self.scale_shift_table = nn.Parameter( + torch.randn(num_ada_params, dim) / dim**0.5 + ) + + # let chunk size default to None + self._chunk_size = None + self._chunk_dim = 0 + + def set_use_tpu_flash_attention(self): + r""" + Function sets the flag in this object and propagates down the children. The flag will enforce the usage of TPU + attention kernel. + """ + self.use_tpu_flash_attention = True + self.attn1.set_use_tpu_flash_attention() + self.attn2.set_use_tpu_flash_attention() + + def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): + # Sets chunk feed-forward + self._chunk_size = chunk_size + self._chunk_dim = dim + + def forward( + self, + hidden_states: torch.FloatTensor, + freqs_cis: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None, + attention_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + timestep: Optional[torch.LongTensor] = None, + cross_attention_kwargs: Dict[str, Any] = None, + class_labels: Optional[torch.LongTensor] = None, + added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, + ) -> torch.FloatTensor: + if cross_attention_kwargs is not None: + if cross_attention_kwargs.get("scale", None) is not None: + logger.warning( + "Passing `scale` to `cross_attention_kwargs` is depcrecated. `scale` will be ignored." + ) + + # Notice that normalization is always applied before the real computation in the following blocks. + # 0. Self-Attention + batch_size = hidden_states.shape[0] + + norm_hidden_states = self.norm1(hidden_states) + + # Apply ada_norm_single + if self.adaptive_norm in ["single_scale_shift", "single_scale"]: + assert timestep.ndim == 3 # [batch, 1 or num_tokens, embedding_dim] + num_ada_params = self.scale_shift_table.shape[0] + ada_values = self.scale_shift_table[None, None] + timestep.reshape( + batch_size, timestep.shape[1], num_ada_params, -1 + ) + if self.adaptive_norm == "single_scale_shift": + shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( + ada_values.unbind(dim=2) + ) + norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa + else: + scale_msa, gate_msa, scale_mlp, gate_mlp = ada_values.unbind(dim=2) + norm_hidden_states = norm_hidden_states * (1 + scale_msa) + elif self.adaptive_norm == "none": + scale_msa, gate_msa, scale_mlp, gate_mlp = None, None, None, None + else: + raise ValueError(f"Unknown adaptive norm type: {self.adaptive_norm}") + + norm_hidden_states = norm_hidden_states.squeeze( + 1 + ) # TODO: Check if this is needed + + # 1. Prepare GLIGEN inputs + cross_attention_kwargs = ( + cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} + ) + + attn_output = self.attn1( + norm_hidden_states, + freqs_cis=freqs_cis, + encoder_hidden_states=( + encoder_hidden_states if self.only_cross_attention else None + ), + attention_mask=attention_mask, + **cross_attention_kwargs, + ) + if gate_msa is not None: + attn_output = gate_msa * attn_output + + hidden_states = attn_output + hidden_states + if hidden_states.ndim == 4: + hidden_states = hidden_states.squeeze(1) + + # 3. Cross-Attention + if self.attn2 is not None: + if self.adaptive_norm == "none": + attn_input = self.attn2_norm(hidden_states) + else: + attn_input = hidden_states + attn_output = self.attn2( + attn_input, + freqs_cis=freqs_cis, + encoder_hidden_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + **cross_attention_kwargs, + ) + hidden_states = attn_output + hidden_states + + # 4. Feed-forward + norm_hidden_states = self.norm2(hidden_states) + if self.adaptive_norm == "single_scale_shift": + norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp + elif self.adaptive_norm == "single_scale": + norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + elif self.adaptive_norm == "none": + pass + else: + raise ValueError(f"Unknown adaptive norm type: {self.adaptive_norm}") + + if self._chunk_size is not None: + # "feed_forward_chunk_size" can be used to save memory + ff_output = _chunked_feed_forward( + self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size + ) + else: + ff_output = self.ff(norm_hidden_states) + if gate_mlp is not None: + ff_output = gate_mlp * ff_output + + hidden_states = ff_output + hidden_states + if hidden_states.ndim == 4: + hidden_states = hidden_states.squeeze(1) + + return hidden_states + + +@maybe_allow_in_graph +class Attention(nn.Module): + r""" + A cross attention layer. + + Parameters: + query_dim (`int`): + The number of channels in the query. + cross_attention_dim (`int`, *optional*): + The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. + heads (`int`, *optional*, defaults to 8): + The number of heads to use for multi-head attention. + dim_head (`int`, *optional*, defaults to 64): + The number of channels in each head. + dropout (`float`, *optional*, defaults to 0.0): + The dropout probability to use. + bias (`bool`, *optional*, defaults to False): + Set to `True` for the query, key, and value linear layers to contain a bias parameter. + upcast_attention (`bool`, *optional*, defaults to False): + Set to `True` to upcast the attention computation to `float32`. + upcast_softmax (`bool`, *optional*, defaults to False): + Set to `True` to upcast the softmax computation to `float32`. + cross_attention_norm (`str`, *optional*, defaults to `None`): + The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. + cross_attention_norm_num_groups (`int`, *optional*, defaults to 32): + The number of groups to use for the group norm in the cross attention. + added_kv_proj_dim (`int`, *optional*, defaults to `None`): + The number of channels to use for the added key and value projections. If `None`, no projection is used. + norm_num_groups (`int`, *optional*, defaults to `None`): + The number of groups to use for the group norm in the attention. + spatial_norm_dim (`int`, *optional*, defaults to `None`): + The number of channels to use for the spatial normalization. + out_bias (`bool`, *optional*, defaults to `True`): + Set to `True` to use a bias in the output linear layer. + scale_qk (`bool`, *optional*, defaults to `True`): + Set to `True` to scale the query and key by `1 / sqrt(dim_head)`. + qk_norm (`str`, *optional*, defaults to None): + Set to 'layer_norm' or `rms_norm` to perform query and key normalization. + only_cross_attention (`bool`, *optional*, defaults to `False`): + Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if + `added_kv_proj_dim` is not `None`. + eps (`float`, *optional*, defaults to 1e-5): + An additional value added to the denominator in group normalization that is used for numerical stability. + rescale_output_factor (`float`, *optional*, defaults to 1.0): + A factor to rescale the output by dividing it with this value. + residual_connection (`bool`, *optional*, defaults to `False`): + Set to `True` to add the residual connection to the output. + _from_deprecated_attn_block (`bool`, *optional*, defaults to `False`): + Set to `True` if the attention block is loaded from a deprecated state dict. + processor (`AttnProcessor`, *optional*, defaults to `None`): + The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and + `AttnProcessor` otherwise. + """ + + def __init__( + self, + query_dim: int, + cross_attention_dim: Optional[int] = None, + heads: int = 8, + dim_head: int = 64, + dropout: float = 0.0, + bias: bool = False, + upcast_attention: bool = False, + upcast_softmax: bool = False, + cross_attention_norm: Optional[str] = None, + cross_attention_norm_num_groups: int = 32, + added_kv_proj_dim: Optional[int] = None, + norm_num_groups: Optional[int] = None, + spatial_norm_dim: Optional[int] = None, + out_bias: bool = True, + scale_qk: bool = True, + qk_norm: Optional[str] = None, + only_cross_attention: bool = False, + eps: float = 1e-5, + rescale_output_factor: float = 1.0, + residual_connection: bool = False, + _from_deprecated_attn_block: bool = False, + processor: Optional["AttnProcessor"] = None, + out_dim: int = None, + use_tpu_flash_attention: bool = False, + use_rope: bool = False, + ): + super().__init__() + self.inner_dim = out_dim if out_dim is not None else dim_head * heads + self.query_dim = query_dim + self.use_bias = bias + self.is_cross_attention = cross_attention_dim is not None + self.cross_attention_dim = ( + cross_attention_dim if cross_attention_dim is not None else query_dim + ) + self.upcast_attention = upcast_attention + self.upcast_softmax = upcast_softmax + self.rescale_output_factor = rescale_output_factor + self.residual_connection = residual_connection + self.dropout = dropout + self.fused_projections = False + self.out_dim = out_dim if out_dim is not None else query_dim + self.use_tpu_flash_attention = use_tpu_flash_attention + self.use_rope = use_rope + + # we make use of this private variable to know whether this class is loaded + # with an deprecated state dict so that we can convert it on the fly + self._from_deprecated_attn_block = _from_deprecated_attn_block + + self.scale_qk = scale_qk + self.scale = dim_head**-0.5 if self.scale_qk else 1.0 + + if qk_norm is None: + self.q_norm = nn.Identity() + self.k_norm = nn.Identity() + elif qk_norm == "rms_norm": + self.q_norm = RMSNorm(dim_head * heads, eps=1e-5) + self.k_norm = RMSNorm(dim_head * heads, eps=1e-5) + elif qk_norm == "layer_norm": + self.q_norm = nn.LayerNorm(dim_head * heads, eps=1e-5) + self.k_norm = nn.LayerNorm(dim_head * heads, eps=1e-5) + else: + raise ValueError(f"Unsupported qk_norm method: {qk_norm}") + + self.heads = out_dim // dim_head if out_dim is not None else heads + # for slice_size > 0 the attention score computation + # is split across the batch axis to save memory + # You can set slice_size with `set_attention_slice` + self.sliceable_head_dim = heads + + self.added_kv_proj_dim = added_kv_proj_dim + self.only_cross_attention = only_cross_attention + + if self.added_kv_proj_dim is None and self.only_cross_attention: + raise ValueError( + "`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." + ) + + if norm_num_groups is not None: + self.group_norm = nn.GroupNorm( + num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True + ) + else: + self.group_norm = None + + if spatial_norm_dim is not None: + self.spatial_norm = SpatialNorm( + f_channels=query_dim, zq_channels=spatial_norm_dim + ) + else: + self.spatial_norm = None + + if cross_attention_norm is None: + self.norm_cross = None + elif cross_attention_norm == "layer_norm": + self.norm_cross = nn.LayerNorm(self.cross_attention_dim) + elif cross_attention_norm == "group_norm": + if self.added_kv_proj_dim is not None: + # The given `encoder_hidden_states` are initially of shape + # (batch_size, seq_len, added_kv_proj_dim) before being projected + # to (batch_size, seq_len, cross_attention_dim). The norm is applied + # before the projection, so we need to use `added_kv_proj_dim` as + # the number of channels for the group norm. + norm_cross_num_channels = added_kv_proj_dim + else: + norm_cross_num_channels = self.cross_attention_dim + + self.norm_cross = nn.GroupNorm( + num_channels=norm_cross_num_channels, + num_groups=cross_attention_norm_num_groups, + eps=1e-5, + affine=True, + ) + else: + raise ValueError( + f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" + ) + + linear_cls = nn.Linear + + self.linear_cls = linear_cls + self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias) + + if not self.only_cross_attention: + # only relevant for the `AddedKVProcessor` classes + self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) + self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) + else: + self.to_k = None + self.to_v = None + + if self.added_kv_proj_dim is not None: + self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim) + self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim) + + self.to_out = nn.ModuleList([]) + self.to_out.append(linear_cls(self.inner_dim, self.out_dim, bias=out_bias)) + self.to_out.append(nn.Dropout(dropout)) + + # set attention processor + # We use the AttnProcessor2_0 by default when torch 2.x is used which uses + # torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention + # but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 + if processor is None: + processor = AttnProcessor2_0() + self.set_processor(processor) + + def set_use_tpu_flash_attention(self): + r""" + Function sets the flag in this object. The flag will enforce the usage of TPU attention kernel. + """ + self.use_tpu_flash_attention = True + + def set_processor(self, processor: "AttnProcessor") -> None: + r""" + Set the attention processor to use. + + Args: + processor (`AttnProcessor`): + The attention processor to use. + """ + # if current processor is in `self._modules` and if passed `processor` is not, we need to + # pop `processor` from `self._modules` + if ( + hasattr(self, "processor") + and isinstance(self.processor, torch.nn.Module) + and not isinstance(processor, torch.nn.Module) + ): + logger.info( + f"You are removing possibly trained weights of {self.processor} with {processor}" + ) + self._modules.pop("processor") + + self.processor = processor + + def get_processor( + self, return_deprecated_lora: bool = False + ) -> "AttentionProcessor": # noqa: F821 + r""" + Get the attention processor in use. + + Args: + return_deprecated_lora (`bool`, *optional*, defaults to `False`): + Set to `True` to return the deprecated LoRA attention processor. + + Returns: + "AttentionProcessor": The attention processor in use. + """ + if not return_deprecated_lora: + return self.processor + + # TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible + # serialization format for LoRA Attention Processors. It should be deleted once the integration + # with PEFT is completed. + is_lora_activated = { + name: module.lora_layer is not None + for name, module in self.named_modules() + if hasattr(module, "lora_layer") + } + + # 1. if no layer has a LoRA activated we can return the processor as usual + if not any(is_lora_activated.values()): + return self.processor + + # If doesn't apply LoRA do `add_k_proj` or `add_v_proj` + is_lora_activated.pop("add_k_proj", None) + is_lora_activated.pop("add_v_proj", None) + # 2. else it is not posssible that only some layers have LoRA activated + if not all(is_lora_activated.values()): + raise ValueError( + f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}" + ) + + # 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor + non_lora_processor_cls_name = self.processor.__class__.__name__ + lora_processor_cls = getattr( + import_module(__name__), "LoRA" + non_lora_processor_cls_name + ) + + hidden_size = self.inner_dim + + # now create a LoRA attention processor from the LoRA layers + if lora_processor_cls in [ + LoRAAttnProcessor, + LoRAAttnProcessor2_0, + LoRAXFormersAttnProcessor, + ]: + kwargs = { + "cross_attention_dim": self.cross_attention_dim, + "rank": self.to_q.lora_layer.rank, + "network_alpha": self.to_q.lora_layer.network_alpha, + "q_rank": self.to_q.lora_layer.rank, + "q_hidden_size": self.to_q.lora_layer.out_features, + "k_rank": self.to_k.lora_layer.rank, + "k_hidden_size": self.to_k.lora_layer.out_features, + "v_rank": self.to_v.lora_layer.rank, + "v_hidden_size": self.to_v.lora_layer.out_features, + "out_rank": self.to_out[0].lora_layer.rank, + "out_hidden_size": self.to_out[0].lora_layer.out_features, + } + + if hasattr(self.processor, "attention_op"): + kwargs["attention_op"] = self.processor.attention_op + + lora_processor = lora_processor_cls(hidden_size, **kwargs) + lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) + lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) + lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) + lora_processor.to_out_lora.load_state_dict( + self.to_out[0].lora_layer.state_dict() + ) + elif lora_processor_cls == LoRAAttnAddedKVProcessor: + lora_processor = lora_processor_cls( + hidden_size, + cross_attention_dim=self.add_k_proj.weight.shape[0], + rank=self.to_q.lora_layer.rank, + network_alpha=self.to_q.lora_layer.network_alpha, + ) + lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) + lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) + lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) + lora_processor.to_out_lora.load_state_dict( + self.to_out[0].lora_layer.state_dict() + ) + + # only save if used + if self.add_k_proj.lora_layer is not None: + lora_processor.add_k_proj_lora.load_state_dict( + self.add_k_proj.lora_layer.state_dict() + ) + lora_processor.add_v_proj_lora.load_state_dict( + self.add_v_proj.lora_layer.state_dict() + ) + else: + lora_processor.add_k_proj_lora = None + lora_processor.add_v_proj_lora = None + else: + raise ValueError(f"{lora_processor_cls} does not exist.") + + return lora_processor + + def forward( + self, + hidden_states: torch.FloatTensor, + freqs_cis: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + **cross_attention_kwargs, + ) -> torch.Tensor: + r""" + The forward method of the `Attention` class. + + Args: + hidden_states (`torch.Tensor`): + The hidden states of the query. + encoder_hidden_states (`torch.Tensor`, *optional*): + The hidden states of the encoder. + attention_mask (`torch.Tensor`, *optional*): + The attention mask to use. If `None`, no mask is applied. + **cross_attention_kwargs: + Additional keyword arguments to pass along to the cross attention. + + Returns: + `torch.Tensor`: The output of the attention layer. + """ + # The `Attention` class can call different attention processors / attention functions + # here we simply pass along all tensors to the selected processor class + # For standard processors that are defined here, `**cross_attention_kwargs` is empty + + attn_parameters = set( + inspect.signature(self.processor.__call__).parameters.keys() + ) + unused_kwargs = [ + k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters + ] + if len(unused_kwargs) > 0: + logger.warning( + f"cross_attention_kwargs {unused_kwargs} are not expected by" + f" {self.processor.__class__.__name__} and will be ignored." + ) + cross_attention_kwargs = { + k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters + } + + return self.processor( + self, + hidden_states, + freqs_cis=freqs_cis, + encoder_hidden_states=encoder_hidden_states, + attention_mask=attention_mask, + **cross_attention_kwargs, + ) + + def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor: + r""" + Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads` + is the number of heads initialized while constructing the `Attention` class. + + Args: + tensor (`torch.Tensor`): The tensor to reshape. + + Returns: + `torch.Tensor`: The reshaped tensor. + """ + head_size = self.heads + batch_size, seq_len, dim = tensor.shape + tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) + tensor = tensor.permute(0, 2, 1, 3).reshape( + batch_size // head_size, seq_len, dim * head_size + ) + return tensor + + def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor: + r""" + Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is + the number of heads initialized while constructing the `Attention` class. + + Args: + tensor (`torch.Tensor`): The tensor to reshape. + out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is + reshaped to `[batch_size * heads, seq_len, dim // heads]`. + + Returns: + `torch.Tensor`: The reshaped tensor. + """ + + head_size = self.heads + if tensor.ndim == 3: + batch_size, seq_len, dim = tensor.shape + extra_dim = 1 + else: + batch_size, extra_dim, seq_len, dim = tensor.shape + tensor = tensor.reshape( + batch_size, seq_len * extra_dim, head_size, dim // head_size + ) + tensor = tensor.permute(0, 2, 1, 3) + + if out_dim == 3: + tensor = tensor.reshape( + batch_size * head_size, seq_len * extra_dim, dim // head_size + ) + + return tensor + + def get_attention_scores( + self, + query: torch.Tensor, + key: torch.Tensor, + attention_mask: torch.Tensor = None, + ) -> torch.Tensor: + r""" + Compute the attention scores. + + Args: + query (`torch.Tensor`): The query tensor. + key (`torch.Tensor`): The key tensor. + attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. + + Returns: + `torch.Tensor`: The attention probabilities/scores. + """ + dtype = query.dtype + if self.upcast_attention: + query = query.float() + key = key.float() + + if attention_mask is None: + baddbmm_input = torch.empty( + query.shape[0], + query.shape[1], + key.shape[1], + dtype=query.dtype, + device=query.device, + ) + beta = 0 + else: + baddbmm_input = attention_mask + beta = 1 + + attention_scores = torch.baddbmm( + baddbmm_input, + query, + key.transpose(-1, -2), + beta=beta, + alpha=self.scale, + ) + del baddbmm_input + + if self.upcast_softmax: + attention_scores = attention_scores.float() + + attention_probs = attention_scores.softmax(dim=-1) + del attention_scores + + attention_probs = attention_probs.to(dtype) + + return attention_probs + + def prepare_attention_mask( + self, + attention_mask: torch.Tensor, + target_length: int, + batch_size: int, + out_dim: int = 3, + ) -> torch.Tensor: + r""" + Prepare the attention mask for the attention computation. + + Args: + attention_mask (`torch.Tensor`): + The attention mask to prepare. + target_length (`int`): + The target length of the attention mask. This is the length of the attention mask after padding. + batch_size (`int`): + The batch size, which is used to repeat the attention mask. + out_dim (`int`, *optional*, defaults to `3`): + The output dimension of the attention mask. Can be either `3` or `4`. + + Returns: + `torch.Tensor`: The prepared attention mask. + """ + head_size = self.heads + if attention_mask is None: + return attention_mask + + current_length: int = attention_mask.shape[-1] + if current_length != target_length: + if attention_mask.device.type == "mps": + # HACK: MPS: Does not support padding by greater than dimension of input tensor. + # Instead, we can manually construct the padding tensor. + padding_shape = ( + attention_mask.shape[0], + attention_mask.shape[1], + target_length, + ) + padding = torch.zeros( + padding_shape, + dtype=attention_mask.dtype, + device=attention_mask.device, + ) + attention_mask = torch.cat([attention_mask, padding], dim=2) + else: + # TODO: for pipelines such as stable-diffusion, padding cross-attn mask: + # we want to instead pad by (0, remaining_length), where remaining_length is: + # remaining_length: int = target_length - current_length + # TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding + attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) + + if out_dim == 3: + if attention_mask.shape[0] < batch_size * head_size: + attention_mask = attention_mask.repeat_interleave(head_size, dim=0) + elif out_dim == 4: + attention_mask = attention_mask.unsqueeze(1) + attention_mask = attention_mask.repeat_interleave(head_size, dim=1) + + return attention_mask + + def norm_encoder_hidden_states( + self, encoder_hidden_states: torch.Tensor + ) -> torch.Tensor: + r""" + Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the + `Attention` class. + + Args: + encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder. + + Returns: + `torch.Tensor`: The normalized encoder hidden states. + """ + assert ( + self.norm_cross is not None + ), "self.norm_cross must be defined to call self.norm_encoder_hidden_states" + + if isinstance(self.norm_cross, nn.LayerNorm): + encoder_hidden_states = self.norm_cross(encoder_hidden_states) + elif isinstance(self.norm_cross, nn.GroupNorm): + # Group norm norms along the channels dimension and expects + # input to be in the shape of (N, C, *). In this case, we want + # to norm along the hidden dimension, so we need to move + # (batch_size, sequence_length, hidden_size) -> + # (batch_size, hidden_size, sequence_length) + encoder_hidden_states = encoder_hidden_states.transpose(1, 2) + encoder_hidden_states = self.norm_cross(encoder_hidden_states) + encoder_hidden_states = encoder_hidden_states.transpose(1, 2) + else: + assert False + + return encoder_hidden_states + + @staticmethod + def apply_rotary_emb( + input_tensor: torch.Tensor, + freqs_cis: Tuple[torch.FloatTensor, torch.FloatTensor], + ) -> Tuple[torch.Tensor, torch.Tensor]: + cos_freqs = freqs_cis[0] + sin_freqs = freqs_cis[1] + + t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2) + t1, t2 = t_dup.unbind(dim=-1) + t_dup = torch.stack((-t2, t1), dim=-1) + input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)") + + out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs + + return out + + +class AttnProcessor2_0: + r""" + Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). + """ + + def __init__(self): + pass + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + freqs_cis: Tuple[torch.FloatTensor, torch.FloatTensor], + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + temb: Optional[torch.FloatTensor] = None, + *args, + **kwargs, + ) -> torch.FloatTensor: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + residual = hidden_states + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view( + batch_size, channel, height * width + ).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape + if encoder_hidden_states is None + else encoder_hidden_states.shape + ) + + if (attention_mask is not None) and (not attn.use_tpu_flash_attention): + attention_mask = attn.prepare_attention_mask( + attention_mask, sequence_length, batch_size + ) + # scaled_dot_product_attention expects attention_mask shape to be + # (batch, heads, source_length, target_length) + attention_mask = attention_mask.view( + batch_size, attn.heads, -1, attention_mask.shape[-1] + ) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( + 1, 2 + ) + + query = attn.to_q(hidden_states) + query = attn.q_norm(query) + + if encoder_hidden_states is not None: + if attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states( + encoder_hidden_states + ) + key = attn.to_k(encoder_hidden_states) + key = attn.k_norm(key) + else: # if no context provided do self-attention + encoder_hidden_states = hidden_states + key = attn.to_k(hidden_states) + key = attn.k_norm(key) + if attn.use_rope: + key = attn.apply_rotary_emb(key, freqs_cis) + query = attn.apply_rotary_emb(query, freqs_cis) + + value = attn.to_v(encoder_hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + + if attn.use_tpu_flash_attention: # use tpu attention offload 'flash attention' + q_segment_indexes = None + if ( + attention_mask is not None + ): # if mask is required need to tune both segmenIds fields + # attention_mask = torch.squeeze(attention_mask).to(torch.float32) + attention_mask = attention_mask.to(torch.float32) + q_segment_indexes = torch.ones( + batch_size, query.shape[2], device=query.device, dtype=torch.float32 + ) + assert ( + attention_mask.shape[1] == key.shape[2] + ), f"ERROR: KEY SHAPE must be same as attention mask [{key.shape[2]}, {attention_mask.shape[1]}]" + + assert ( + query.shape[2] % 128 == 0 + ), f"ERROR: QUERY SHAPE must be divisible by 128 (TPU limitation) [{query.shape[2]}]" + assert ( + key.shape[2] % 128 == 0 + ), f"ERROR: KEY SHAPE must be divisible by 128 (TPU limitation) [{key.shape[2]}]" + + # run the TPU kernel implemented in jax with pallas + hidden_states = flash_attention( + q=query, + k=key, + v=value, + q_segment_ids=q_segment_indexes, + kv_segment_ids=attention_mask, + sm_scale=attn.scale, + ) + else: + hidden_states = F.scaled_dot_product_attention( + query, + key, + value, + attn_mask=attention_mask, + dropout_p=0.0, + is_causal=False, + ) + + hidden_states = hidden_states.transpose(1, 2).reshape( + batch_size, -1, attn.heads * head_dim + ) + hidden_states = hidden_states.to(query.dtype) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape( + batch_size, channel, height, width + ) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class AttnProcessor: + r""" + Default processor for performing attention-related computations. + """ + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + temb: Optional[torch.FloatTensor] = None, + *args, + **kwargs, + ) -> torch.Tensor: + if len(args) > 0 or kwargs.get("scale", None) is not None: + deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." + deprecate("scale", "1.0.0", deprecation_message) + + residual = hidden_states + + if attn.spatial_norm is not None: + hidden_states = attn.spatial_norm(hidden_states, temb) + + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view( + batch_size, channel, height * width + ).transpose(1, 2) + + batch_size, sequence_length, _ = ( + hidden_states.shape + if encoder_hidden_states is None + else encoder_hidden_states.shape + ) + attention_mask = attn.prepare_attention_mask( + attention_mask, sequence_length, batch_size + ) + + if attn.group_norm is not None: + hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( + 1, 2 + ) + + query = attn.to_q(hidden_states) + + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + elif attn.norm_cross: + encoder_hidden_states = attn.norm_encoder_hidden_states( + encoder_hidden_states + ) + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + query = attn.head_to_batch_dim(query) + key = attn.head_to_batch_dim(key) + value = attn.head_to_batch_dim(value) + + query = attn.q_norm(query) + key = attn.k_norm(key) + + attention_probs = attn.get_attention_scores(query, key, attention_mask) + hidden_states = torch.bmm(attention_probs, value) + hidden_states = attn.batch_to_head_dim(hidden_states) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape( + batch_size, channel, height, width + ) + + if attn.residual_connection: + hidden_states = hidden_states + residual + + hidden_states = hidden_states / attn.rescale_output_factor + + return hidden_states + + +class FeedForward(nn.Module): + r""" + A feed-forward layer. + + Parameters: + dim (`int`): The number of channels in the input. + dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. + mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. + dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. + activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. + final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. + bias (`bool`, defaults to True): Whether to use a bias in the linear layer. + """ + + def __init__( + self, + dim: int, + dim_out: Optional[int] = None, + mult: int = 4, + dropout: float = 0.0, + activation_fn: str = "geglu", + final_dropout: bool = False, + inner_dim=None, + bias: bool = True, + ): + super().__init__() + if inner_dim is None: + inner_dim = int(dim * mult) + dim_out = dim_out if dim_out is not None else dim + linear_cls = nn.Linear + + if activation_fn == "gelu": + act_fn = GELU(dim, inner_dim, bias=bias) + elif activation_fn == "gelu-approximate": + act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) + elif activation_fn == "geglu": + act_fn = GEGLU(dim, inner_dim, bias=bias) + elif activation_fn == "geglu-approximate": + act_fn = ApproximateGELU(dim, inner_dim, bias=bias) + else: + raise ValueError(f"Unsupported activation function: {activation_fn}") + + self.net = nn.ModuleList([]) + # project in + self.net.append(act_fn) + # project dropout + self.net.append(nn.Dropout(dropout)) + # project out + self.net.append(linear_cls(inner_dim, dim_out, bias=bias)) + # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout + if final_dropout: + self.net.append(nn.Dropout(dropout)) + + def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor: + compatible_cls = (GEGLU, LoRACompatibleLinear) + for module in self.net: + if isinstance(module, compatible_cls): + hidden_states = module(hidden_states, scale) + else: + hidden_states = module(hidden_states) + return hidden_states diff --git a/ltx_video/models/transformers/embeddings.py b/ltx_video/models/transformers/embeddings.py new file mode 100644 index 0000000..a30d6be --- /dev/null +++ b/ltx_video/models/transformers/embeddings.py @@ -0,0 +1,129 @@ +# Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/embeddings.py +import math + +import numpy as np +import torch +from einops import rearrange +from torch import nn + + +def get_timestep_embedding( + timesteps: torch.Tensor, + embedding_dim: int, + flip_sin_to_cos: bool = False, + downscale_freq_shift: float = 1, + scale: float = 1, + max_period: int = 10000, +): + """ + This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. + + :param timesteps: a 1-D Tensor of N indices, one per batch element. + These may be fractional. + :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the + embeddings. :return: an [N x dim] Tensor of positional embeddings. + """ + assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" + + half_dim = embedding_dim // 2 + exponent = -math.log(max_period) * torch.arange( + start=0, end=half_dim, dtype=torch.float32, device=timesteps.device + ) + exponent = exponent / (half_dim - downscale_freq_shift) + + emb = torch.exp(exponent) + emb = timesteps[:, None].float() * emb[None, :] + + # scale embeddings + emb = scale * emb + + # concat sine and cosine embeddings + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1) + + # flip sine and cosine embeddings + if flip_sin_to_cos: + emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1) + + # zero pad + if embedding_dim % 2 == 1: + emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) + return emb + + +def get_3d_sincos_pos_embed(embed_dim, grid, w, h, f): + """ + grid_size: int of the grid height and width return: pos_embed: [grid_size*grid_size, embed_dim] or + [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token) + """ + grid = rearrange(grid, "c (f h w) -> c f h w", h=h, w=w) + grid = rearrange(grid, "c f h w -> c h w f", h=h, w=w) + grid = grid.reshape([3, 1, w, h, f]) + pos_embed = get_3d_sincos_pos_embed_from_grid(embed_dim, grid) + pos_embed = pos_embed.transpose(1, 0, 2, 3) + return rearrange(pos_embed, "h w f c -> (f h w) c") + + +def get_3d_sincos_pos_embed_from_grid(embed_dim, grid): + if embed_dim % 3 != 0: + raise ValueError("embed_dim must be divisible by 3") + + # use half of dimensions to encode grid_h + emb_f = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[0]) # (H*W*T, D/3) + emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[1]) # (H*W*T, D/3) + emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 3, grid[2]) # (H*W*T, D/3) + + emb = np.concatenate([emb_h, emb_w, emb_f], axis=-1) # (H*W*T, D) + return emb + + +def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): + """ + embed_dim: output dimension for each position pos: a list of positions to be encoded: size (M,) out: (M, D) + """ + if embed_dim % 2 != 0: + raise ValueError("embed_dim must be divisible by 2") + + omega = np.arange(embed_dim // 2, dtype=np.float64) + omega /= embed_dim / 2.0 + omega = 1.0 / 10000**omega # (D/2,) + + pos_shape = pos.shape + + pos = pos.reshape(-1) + out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product + out = out.reshape([*pos_shape, -1])[0] + + emb_sin = np.sin(out) # (M, D/2) + emb_cos = np.cos(out) # (M, D/2) + + emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (M, D) + return emb + + +class SinusoidalPositionalEmbedding(nn.Module): + """Apply positional information to a sequence of embeddings. + + Takes in a sequence of embeddings with shape (batch_size, seq_length, embed_dim) and adds positional embeddings to + them + + Args: + embed_dim: (int): Dimension of the positional embedding. + max_seq_length: Maximum sequence length to apply positional embeddings + + """ + + def __init__(self, embed_dim: int, max_seq_length: int = 32): + super().__init__() + position = torch.arange(max_seq_length).unsqueeze(1) + div_term = torch.exp( + torch.arange(0, embed_dim, 2) * (-math.log(10000.0) / embed_dim) + ) + pe = torch.zeros(1, max_seq_length, embed_dim) + pe[0, :, 0::2] = torch.sin(position * div_term) + pe[0, :, 1::2] = torch.cos(position * div_term) + self.register_buffer("pe", pe) + + def forward(self, x): + _, seq_length, _ = x.shape + x = x + self.pe[:, :seq_length] + return x diff --git a/ltx_video/models/transformers/symmetric_patchifier.py b/ltx_video/models/transformers/symmetric_patchifier.py new file mode 100644 index 0000000..ba1bd6c --- /dev/null +++ b/ltx_video/models/transformers/symmetric_patchifier.py @@ -0,0 +1,96 @@ +from abc import ABC, abstractmethod +from typing import Tuple + +import torch +from diffusers.configuration_utils import ConfigMixin +from einops import rearrange +from torch import Tensor + +from ltx_video.utils.torch_utils import append_dims + + +class Patchifier(ConfigMixin, ABC): + def __init__(self, patch_size: int): + super().__init__() + self._patch_size = (1, patch_size, patch_size) + + @abstractmethod + def patchify( + self, latents: Tensor, frame_rates: Tensor, scale_grid: bool + ) -> Tuple[Tensor, Tensor]: + pass + + @abstractmethod + def unpatchify( + self, + latents: Tensor, + output_height: int, + output_width: int, + output_num_frames: int, + out_channels: int, + ) -> Tuple[Tensor, Tensor]: + pass + + @property + def patch_size(self): + return self._patch_size + + def get_grid( + self, orig_num_frames, orig_height, orig_width, batch_size, scale_grid, device + ): + f = orig_num_frames // self._patch_size[0] + h = orig_height // self._patch_size[1] + w = orig_width // self._patch_size[2] + grid_h = torch.arange(h, dtype=torch.float32, device=device) + grid_w = torch.arange(w, dtype=torch.float32, device=device) + grid_f = torch.arange(f, dtype=torch.float32, device=device) + grid = torch.meshgrid(grid_f, grid_h, grid_w) + grid = torch.stack(grid, dim=0) + grid = grid.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1) + + if scale_grid is not None: + for i in range(3): + if isinstance(scale_grid[i], Tensor): + scale = append_dims(scale_grid[i], grid.ndim - 1) + else: + scale = scale_grid[i] + grid[:, i, ...] = grid[:, i, ...] * scale * self._patch_size[i] + + grid = rearrange(grid, "b c f h w -> b c (f h w)", b=batch_size) + return grid + + +class SymmetricPatchifier(Patchifier): + def patchify( + self, + latents: Tensor, + ) -> Tuple[Tensor, Tensor]: + latents = rearrange( + latents, + "b c (f p1) (h p2) (w p3) -> b (f h w) (c p1 p2 p3)", + p1=self._patch_size[0], + p2=self._patch_size[1], + p3=self._patch_size[2], + ) + return latents + + def unpatchify( + self, + latents: Tensor, + output_height: int, + output_width: int, + output_num_frames: int, + out_channels: int, + ) -> Tuple[Tensor, Tensor]: + output_height = output_height // self._patch_size[1] + output_width = output_width // self._patch_size[2] + latents = rearrange( + latents, + "b (f h w) (c p q) -> b c f (h p) (w q) ", + f=output_num_frames, + h=output_height, + w=output_width, + p=self._patch_size[1], + q=self._patch_size[2], + ) + return latents diff --git a/ltx_video/models/transformers/transformer3d.py b/ltx_video/models/transformers/transformer3d.py new file mode 100644 index 0000000..dfab43d --- /dev/null +++ b/ltx_video/models/transformers/transformer3d.py @@ -0,0 +1,491 @@ +# Adapted from: https://github.com/huggingface/diffusers/blob/v0.26.3/src/diffusers/models/transformers/transformer_2d.py +import math +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Literal + +import torch +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.models.embeddings import PixArtAlphaTextProjection +from diffusers.models.modeling_utils import ModelMixin +from diffusers.models.normalization import AdaLayerNormSingle +from diffusers.utils import BaseOutput, is_torch_version +from diffusers.utils import logging +from torch import nn + +from ltx_video.models.transformers.attention import BasicTransformerBlock +from ltx_video.models.transformers.embeddings import get_3d_sincos_pos_embed + +logger = logging.get_logger(__name__) + + +@dataclass +class Transformer3DModelOutput(BaseOutput): + """ + The output of [`Transformer2DModel`]. + + Args: + sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): + The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability + distributions for the unnoised latent pixels. + """ + + sample: torch.FloatTensor + + +class Transformer3DModel(ModelMixin, ConfigMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + num_attention_heads: int = 16, + attention_head_dim: int = 88, + in_channels: Optional[int] = None, + out_channels: Optional[int] = None, + num_layers: int = 1, + dropout: float = 0.0, + norm_num_groups: int = 32, + cross_attention_dim: Optional[int] = None, + attention_bias: bool = False, + num_vector_embeds: Optional[int] = None, + activation_fn: str = "geglu", + num_embeds_ada_norm: Optional[int] = None, + use_linear_projection: bool = False, + only_cross_attention: bool = False, + double_self_attention: bool = False, + upcast_attention: bool = False, + adaptive_norm: str = "single_scale_shift", # 'single_scale_shift' or 'single_scale' + standardization_norm: str = "layer_norm", # 'layer_norm' or 'rms_norm' + norm_elementwise_affine: bool = True, + norm_eps: float = 1e-5, + attention_type: str = "default", + caption_channels: int = None, + project_to_2d_pos: bool = False, + use_tpu_flash_attention: bool = False, # if True uses the TPU attention offload ('flash attention') + qk_norm: Optional[str] = None, + positional_embedding_type: str = "absolute", + positional_embedding_theta: Optional[float] = None, + positional_embedding_max_pos: Optional[List[int]] = None, + timestep_scale_multiplier: Optional[float] = None, + ): + super().__init__() + self.use_tpu_flash_attention = ( + use_tpu_flash_attention # FIXME: push config down to the attention modules + ) + self.use_linear_projection = use_linear_projection + self.num_attention_heads = num_attention_heads + self.attention_head_dim = attention_head_dim + inner_dim = num_attention_heads * attention_head_dim + self.inner_dim = inner_dim + + self.project_to_2d_pos = project_to_2d_pos + + self.patchify_proj = nn.Linear(in_channels, inner_dim, bias=True) + + self.positional_embedding_type = positional_embedding_type + self.positional_embedding_theta = positional_embedding_theta + self.positional_embedding_max_pos = positional_embedding_max_pos + self.use_rope = self.positional_embedding_type == "rope" + self.timestep_scale_multiplier = timestep_scale_multiplier + + if self.positional_embedding_type == "absolute": + embed_dim_3d = ( + math.ceil((inner_dim / 2) * 3) if project_to_2d_pos else inner_dim + ) + if self.project_to_2d_pos: + self.to_2d_proj = torch.nn.Linear(embed_dim_3d, inner_dim, bias=False) + self._init_to_2d_proj_weights(self.to_2d_proj) + elif self.positional_embedding_type == "rope": + if positional_embedding_theta is None: + raise ValueError( + "If `positional_embedding_type` type is rope, `positional_embedding_theta` must also be defined" + ) + if positional_embedding_max_pos is None: + raise ValueError( + "If `positional_embedding_type` type is rope, `positional_embedding_max_pos` must also be defined" + ) + + # 3. Define transformers blocks + self.transformer_blocks = nn.ModuleList( + [ + BasicTransformerBlock( + inner_dim, + num_attention_heads, + attention_head_dim, + dropout=dropout, + cross_attention_dim=cross_attention_dim, + activation_fn=activation_fn, + num_embeds_ada_norm=num_embeds_ada_norm, + attention_bias=attention_bias, + only_cross_attention=only_cross_attention, + double_self_attention=double_self_attention, + upcast_attention=upcast_attention, + adaptive_norm=adaptive_norm, + standardization_norm=standardization_norm, + norm_elementwise_affine=norm_elementwise_affine, + norm_eps=norm_eps, + attention_type=attention_type, + use_tpu_flash_attention=use_tpu_flash_attention, + qk_norm=qk_norm, + use_rope=self.use_rope, + ) + for d in range(num_layers) + ] + ) + + # 4. Define output layers + self.out_channels = in_channels if out_channels is None else out_channels + self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) + self.scale_shift_table = nn.Parameter( + torch.randn(2, inner_dim) / inner_dim**0.5 + ) + self.proj_out = nn.Linear(inner_dim, self.out_channels) + + self.adaln_single = AdaLayerNormSingle( + inner_dim, use_additional_conditions=False + ) + if adaptive_norm == "single_scale": + self.adaln_single.linear = nn.Linear(inner_dim, 4 * inner_dim, bias=True) + + self.caption_projection = None + if caption_channels is not None: + self.caption_projection = PixArtAlphaTextProjection( + in_features=caption_channels, hidden_size=inner_dim + ) + + self.gradient_checkpointing = False + + def set_use_tpu_flash_attention(self): + r""" + Function sets the flag in this object and propagates down the children. The flag will enforce the usage of TPU + attention kernel. + """ + logger.info("ENABLE TPU FLASH ATTENTION -> TRUE") + self.use_tpu_flash_attention = True + # push config down to the attention modules + for block in self.transformer_blocks: + block.set_use_tpu_flash_attention() + + def initialize(self, embedding_std: float, mode: Literal["ltx_video", "legacy"]): + def _basic_init(module): + if isinstance(module, nn.Linear): + torch.nn.init.xavier_uniform_(module.weight) + if module.bias is not None: + nn.init.constant_(module.bias, 0) + + self.apply(_basic_init) + + # Initialize timestep embedding MLP: + nn.init.normal_( + self.adaln_single.emb.timestep_embedder.linear_1.weight, std=embedding_std + ) + nn.init.normal_( + self.adaln_single.emb.timestep_embedder.linear_2.weight, std=embedding_std + ) + nn.init.normal_(self.adaln_single.linear.weight, std=embedding_std) + + if hasattr(self.adaln_single.emb, "resolution_embedder"): + nn.init.normal_( + self.adaln_single.emb.resolution_embedder.linear_1.weight, + std=embedding_std, + ) + nn.init.normal_( + self.adaln_single.emb.resolution_embedder.linear_2.weight, + std=embedding_std, + ) + if hasattr(self.adaln_single.emb, "aspect_ratio_embedder"): + nn.init.normal_( + self.adaln_single.emb.aspect_ratio_embedder.linear_1.weight, + std=embedding_std, + ) + nn.init.normal_( + self.adaln_single.emb.aspect_ratio_embedder.linear_2.weight, + std=embedding_std, + ) + + # Initialize caption embedding MLP: + nn.init.normal_(self.caption_projection.linear_1.weight, std=embedding_std) + nn.init.normal_(self.caption_projection.linear_1.weight, std=embedding_std) + + for block in self.transformer_blocks: + if mode.lower() == "ltx_video": + nn.init.constant_(block.attn1.to_out[0].weight, 0) + nn.init.constant_(block.attn1.to_out[0].bias, 0) + + nn.init.constant_(block.attn2.to_out[0].weight, 0) + nn.init.constant_(block.attn2.to_out[0].bias, 0) + + if mode.lower() == "ltx_video": + nn.init.constant_(block.ff.net[2].weight, 0) + nn.init.constant_(block.ff.net[2].bias, 0) + + # Zero-out output layers: + nn.init.constant_(self.proj_out.weight, 0) + nn.init.constant_(self.proj_out.bias, 0) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, "gradient_checkpointing"): + module.gradient_checkpointing = value + + @staticmethod + def _init_to_2d_proj_weights(linear_layer): + input_features = linear_layer.weight.data.size(1) + output_features = linear_layer.weight.data.size(0) + + # Start with a zero matrix + identity_like = torch.zeros((output_features, input_features)) + + # Fill the diagonal with 1's as much as possible + min_features = min(output_features, input_features) + identity_like[:min_features, :min_features] = torch.eye(min_features) + linear_layer.weight.data = identity_like.to(linear_layer.weight.data.device) + + def get_fractional_positions(self, indices_grid): + fractional_positions = torch.stack( + [ + indices_grid[:, i] / self.positional_embedding_max_pos[i] + for i in range(3) + ], + dim=-1, + ) + return fractional_positions + + def precompute_freqs_cis(self, indices_grid, spacing="exp"): + dtype = torch.float32 # We need full precision in the freqs_cis computation. + dim = self.inner_dim + theta = self.positional_embedding_theta + + fractional_positions = self.get_fractional_positions(indices_grid) + + start = 1 + end = theta + device = fractional_positions.device + if spacing == "exp": + indices = theta ** ( + torch.linspace( + math.log(start, theta), + math.log(end, theta), + dim // 6, + device=device, + dtype=dtype, + ) + ) + indices = indices.to(dtype=dtype) + elif spacing == "exp_2": + indices = 1.0 / theta ** (torch.arange(0, dim, 6, device=device) / dim) + indices = indices.to(dtype=dtype) + elif spacing == "linear": + indices = torch.linspace(start, end, dim // 6, device=device, dtype=dtype) + elif spacing == "sqrt": + indices = torch.linspace( + start**2, end**2, dim // 6, device=device, dtype=dtype + ).sqrt() + + indices = indices * math.pi / 2 + + if spacing == "exp_2": + freqs = ( + (indices * fractional_positions.unsqueeze(-1)) + .transpose(-1, -2) + .flatten(2) + ) + else: + freqs = ( + (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)) + .transpose(-1, -2) + .flatten(2) + ) + + cos_freq = freqs.cos().repeat_interleave(2, dim=-1) + sin_freq = freqs.sin().repeat_interleave(2, dim=-1) + if dim % 6 != 0: + cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6]) + sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6]) + cos_freq = torch.cat([cos_padding, cos_freq], dim=-1) + sin_freq = torch.cat([sin_padding, sin_freq], dim=-1) + return cos_freq.to(self.dtype), sin_freq.to(self.dtype) + + def forward( + self, + hidden_states: torch.Tensor, + indices_grid: torch.Tensor, + encoder_hidden_states: Optional[torch.Tensor] = None, + timestep: Optional[torch.LongTensor] = None, + class_labels: Optional[torch.LongTensor] = None, + cross_attention_kwargs: Dict[str, Any] = None, + attention_mask: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + return_dict: bool = True, + ): + """ + The [`Transformer2DModel`] forward method. + + Args: + hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): + Input `hidden_states`. + indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`): + encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): + Conditional embeddings for cross attention layer. If not given, cross-attention defaults to + self-attention. + timestep ( `torch.LongTensor`, *optional*): + Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. + class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): + Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in + `AdaLayerZeroNorm`. + cross_attention_kwargs ( `Dict[str, Any]`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + attention_mask ( `torch.Tensor`, *optional*): + An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask + is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large + negative values to the attention scores corresponding to "discard" tokens. + encoder_attention_mask ( `torch.Tensor`, *optional*): + Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: + + * Mask `(batch, sequence_length)` True = keep, False = discard. + * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. + + If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format + above. This bias will be added to the cross-attention scores. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain + tuple. + + Returns: + If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a + `tuple` where the first element is the sample tensor. + """ + # for tpu attention offload 2d token masks are used. No need to transform. + if not self.use_tpu_flash_attention: + # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. + # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. + # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. + # expects mask of shape: + # [batch, key_tokens] + # adds singleton query_tokens dimension: + # [batch, 1, key_tokens] + # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: + # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) + # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) + if attention_mask is not None and attention_mask.ndim == 2: + # assume that mask is expressed as: + # (1 = keep, 0 = discard) + # convert mask into a bias that can be added to attention scores: + # (keep = +0, discard = -10000.0) + attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 + attention_mask = attention_mask.unsqueeze(1) + + # convert encoder_attention_mask to a bias the same way we do for attention_mask + if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: + encoder_attention_mask = ( + 1 - encoder_attention_mask.to(hidden_states.dtype) + ) * -10000.0 + encoder_attention_mask = encoder_attention_mask.unsqueeze(1) + + # 1. Input + hidden_states = self.patchify_proj(hidden_states) + + if self.timestep_scale_multiplier: + timestep = self.timestep_scale_multiplier * timestep + + if self.positional_embedding_type == "absolute": + pos_embed_3d = self.get_absolute_pos_embed(indices_grid).to( + hidden_states.device + ) + if self.project_to_2d_pos: + pos_embed = self.to_2d_proj(pos_embed_3d) + hidden_states = (hidden_states + pos_embed).to(hidden_states.dtype) + freqs_cis = None + elif self.positional_embedding_type == "rope": + freqs_cis = self.precompute_freqs_cis(indices_grid) + + batch_size = hidden_states.shape[0] + timestep, embedded_timestep = self.adaln_single( + timestep.flatten(), + {"resolution": None, "aspect_ratio": None}, + batch_size=batch_size, + hidden_dtype=hidden_states.dtype, + ) + # Second dimension is 1 or number of tokens (if timestep_per_token) + timestep = timestep.view(batch_size, -1, timestep.shape[-1]) + embedded_timestep = embedded_timestep.view( + batch_size, -1, embedded_timestep.shape[-1] + ) + + # 2. Blocks + if self.caption_projection is not None: + batch_size = hidden_states.shape[0] + encoder_hidden_states = self.caption_projection(encoder_hidden_states) + encoder_hidden_states = encoder_hidden_states.view( + batch_size, -1, hidden_states.shape[-1] + ) + + for block in self.transformer_blocks: + if self.training and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = ( + {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + ) + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(block), + hidden_states, + freqs_cis, + attention_mask, + encoder_hidden_states, + encoder_attention_mask, + timestep, + cross_attention_kwargs, + class_labels, + **ckpt_kwargs, + ) + else: + hidden_states = block( + hidden_states, + freqs_cis=freqs_cis, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + timestep=timestep, + cross_attention_kwargs=cross_attention_kwargs, + class_labels=class_labels, + ) + + # 3. Output + scale_shift_values = ( + self.scale_shift_table[None, None] + embedded_timestep[:, :, None] + ) + shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1] + hidden_states = self.norm_out(hidden_states) + # Modulation + hidden_states = hidden_states * (1 + scale) + shift + hidden_states = self.proj_out(hidden_states) + if not return_dict: + return (hidden_states,) + + return Transformer3DModelOutput(sample=hidden_states) + + def get_absolute_pos_embed(self, grid): + grid_np = grid[0].cpu().numpy() + embed_dim_3d = ( + math.ceil((self.inner_dim / 2) * 3) + if self.project_to_2d_pos + else self.inner_dim + ) + pos_embed = get_3d_sincos_pos_embed( # (f h w) + embed_dim_3d, + grid_np, + h=int(max(grid_np[1]) + 1), + w=int(max(grid_np[2]) + 1), + f=int(max(grid_np[0] + 1)), + ) + return torch.from_numpy(pos_embed).float().unsqueeze(0) diff --git a/ltx_video/pipelines/__init__.py b/ltx_video/pipelines/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/ltx_video/pipelines/pipeline_ltx_video.py b/ltx_video/pipelines/pipeline_ltx_video.py new file mode 100644 index 0000000..119f700 --- /dev/null +++ b/ltx_video/pipelines/pipeline_ltx_video.py @@ -0,0 +1,1156 @@ +# Adapted from: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pixart_alpha/pipeline_pixart_alpha.py +import html +import inspect +import math +import re +import urllib.parse as ul +from typing import Callable, Dict, List, Optional, Tuple, Union + + +import torch +import torch.nn.functional as F +from contextlib import nullcontext +from diffusers.image_processor import VaeImageProcessor +from diffusers.models import AutoencoderKL +from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput +from diffusers.schedulers import DPMSolverMultistepScheduler +from diffusers.utils import ( + BACKENDS_MAPPING, + deprecate, + is_bs4_available, + is_ftfy_available, + logging, +) +from diffusers.utils.torch_utils import randn_tensor +from einops import rearrange +from transformers import T5EncoderModel, T5Tokenizer + +from ltx_video.models.transformers.transformer3d import Transformer3DModel +from ltx_video.models.transformers.symmetric_patchifier import Patchifier +from ltx_video.models.autoencoders.vae_encode import ( + get_vae_size_scale_factor, + vae_decode, + vae_encode, +) +from ltx_video.models.autoencoders.causal_video_autoencoder import ( + CausalVideoAutoencoder, +) +from ltx_video.schedulers.rf import TimestepShifter +from ltx_video.utils.conditioning_method import ConditioningMethod + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +if is_bs4_available(): + from bs4 import BeautifulSoup + +if is_ftfy_available(): + import ftfy + +ASPECT_RATIO_1024_BIN = { + "0.25": [512.0, 2048.0], + "0.28": [512.0, 1856.0], + "0.32": [576.0, 1792.0], + "0.33": [576.0, 1728.0], + "0.35": [576.0, 1664.0], + "0.4": [640.0, 1600.0], + "0.42": [640.0, 1536.0], + "0.48": [704.0, 1472.0], + "0.5": [704.0, 1408.0], + "0.52": [704.0, 1344.0], + "0.57": [768.0, 1344.0], + "0.6": [768.0, 1280.0], + "0.68": [832.0, 1216.0], + "0.72": [832.0, 1152.0], + "0.78": [896.0, 1152.0], + "0.82": [896.0, 1088.0], + "0.88": [960.0, 1088.0], + "0.94": [960.0, 1024.0], + "1.0": [1024.0, 1024.0], + "1.07": [1024.0, 960.0], + "1.13": [1088.0, 960.0], + "1.21": [1088.0, 896.0], + "1.29": [1152.0, 896.0], + "1.38": [1152.0, 832.0], + "1.46": [1216.0, 832.0], + "1.67": [1280.0, 768.0], + "1.75": [1344.0, 768.0], + "2.0": [1408.0, 704.0], + "2.09": [1472.0, 704.0], + "2.4": [1536.0, 640.0], + "2.5": [1600.0, 640.0], + "3.0": [1728.0, 576.0], + "4.0": [2048.0, 512.0], +} + +ASPECT_RATIO_512_BIN = { + "0.25": [256.0, 1024.0], + "0.28": [256.0, 928.0], + "0.32": [288.0, 896.0], + "0.33": [288.0, 864.0], + "0.35": [288.0, 832.0], + "0.4": [320.0, 800.0], + "0.42": [320.0, 768.0], + "0.48": [352.0, 736.0], + "0.5": [352.0, 704.0], + "0.52": [352.0, 672.0], + "0.57": [384.0, 672.0], + "0.6": [384.0, 640.0], + "0.68": [416.0, 608.0], + "0.72": [416.0, 576.0], + "0.78": [448.0, 576.0], + "0.82": [448.0, 544.0], + "0.88": [480.0, 544.0], + "0.94": [480.0, 512.0], + "1.0": [512.0, 512.0], + "1.07": [512.0, 480.0], + "1.13": [544.0, 480.0], + "1.21": [544.0, 448.0], + "1.29": [576.0, 448.0], + "1.38": [576.0, 416.0], + "1.46": [608.0, 416.0], + "1.67": [640.0, 384.0], + "1.75": [672.0, 384.0], + "2.0": [704.0, 352.0], + "2.09": [736.0, 352.0], + "2.4": [768.0, 320.0], + "2.5": [800.0, 320.0], + "3.0": [864.0, 288.0], + "4.0": [1024.0, 256.0], +} + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + **kwargs, +): + """ + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, + `timesteps` must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default + timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` + must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None: + accepts_timesteps = "timesteps" in set( + inspect.signature(scheduler.set_timesteps).parameters.keys() + ) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +class LTXVideoPipeline(DiffusionPipeline): + r""" + Pipeline for text-to-image generation using LTX-Video. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the + library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + text_encoder ([`T5EncoderModel`]): + Frozen text-encoder. This uses + [T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the + [t5-v1_1-xxl](https://huggingface.co/PixArt-alpha/PixArt-alpha/tree/main/t5-v1_1-xxl) variant. + tokenizer (`T5Tokenizer`): + Tokenizer of class + [T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer). + transformer ([`Transformer2DModel`]): + A text conditioned `Transformer2DModel` to denoise the encoded image latents. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `transformer` to denoise the encoded image latents. + """ + + bad_punct_regex = re.compile( + r"[" + + "#®•©™&@·º½¾¿¡§~" + + r"\)" + + r"\(" + + r"\]" + + r"\[" + + r"\}" + + r"\{" + + r"\|" + + "\\" + + r"\/" + + r"\*" + + r"]{1,}" + ) # noqa + + _optional_components = ["tokenizer", "text_encoder"] + model_cpu_offload_seq = "text_encoder->transformer->vae" + + def __init__( + self, + tokenizer: T5Tokenizer, + text_encoder: T5EncoderModel, + vae: AutoencoderKL, + transformer: Transformer3DModel, + scheduler: DPMSolverMultistepScheduler, + patchifier: Patchifier, + ): + super().__init__() + + self.register_modules( + tokenizer=tokenizer, + text_encoder=text_encoder, + vae=vae, + transformer=transformer, + scheduler=scheduler, + patchifier=patchifier, + ) + + self.video_scale_factor, self.vae_scale_factor, _ = get_vae_size_scale_factor( + self.vae + ) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + + def mask_text_embeddings(self, emb, mask): + if emb.shape[0] == 1: + keep_index = mask.sum().item() + return emb[:, :, :keep_index, :], keep_index + else: + masked_feature = emb * mask[:, None, :, None] + return masked_feature, emb.shape[2] + + # Adapted from diffusers.pipelines.deepfloyd_if.pipeline_if.encode_prompt + def encode_prompt( + self, + prompt: Union[str, List[str]], + do_classifier_free_guidance: bool = True, + negative_prompt: str = "", + num_images_per_prompt: int = 1, + device: Optional[torch.device] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + prompt_attention_mask: Optional[torch.FloatTensor] = None, + negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, + clean_caption: bool = False, + **kwargs, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + negative_prompt (`str` or `List[str]`, *optional*): + The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` + instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For + This should be "". + do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): + whether to use classifier free guidance or not + num_images_per_prompt (`int`, *optional*, defaults to 1): + number of images that should be generated per prompt + device: (`torch.device`, *optional*): + torch device to place the resulting embeddings on + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. + clean_caption (bool, defaults to `False`): + If `True`, the function will preprocess and clean the provided caption before encoding. + """ + + if "mask_feature" in kwargs: + deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." + deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) + + if device is None: + device = self._execution_device + + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + # See Section 3.1. of the paper. + # FIXME: to be configured in config not hardecoded. Fix in separate PR with rest of config + max_length = 128 # TPU supports only lengths multiple of 128 + + if prompt_embeds is None: + prompt = self._text_preprocessing(prompt, clean_caption=clean_caption) + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=max_length, + truncation=True, + add_special_tokens=True, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer( + prompt, padding="longest", return_tensors="pt" + ).input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[ + -1 + ] and not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode( + untruncated_ids[:, max_length - 1 : -1] + ) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {max_length} tokens: {removed_text}" + ) + + prompt_attention_mask = text_inputs.attention_mask + prompt_attention_mask = prompt_attention_mask.to(device) + + prompt_embeds = self.text_encoder( + text_input_ids.to(device), attention_mask=prompt_attention_mask + ) + prompt_embeds = prompt_embeds[0] + + if self.text_encoder is not None: + dtype = self.text_encoder.dtype + elif self.transformer is not None: + dtype = self.transformer.dtype + else: + dtype = None + + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view( + bs_embed * num_images_per_prompt, seq_len, -1 + ) + prompt_attention_mask = prompt_attention_mask.repeat(1, num_images_per_prompt) + prompt_attention_mask = prompt_attention_mask.view( + bs_embed * num_images_per_prompt, -1 + ) + + # get unconditional embeddings for classifier free guidance + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens = [negative_prompt] * batch_size + uncond_tokens = self._text_preprocessing( + uncond_tokens, clean_caption=clean_caption + ) + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer( + uncond_tokens, + padding="max_length", + max_length=max_length, + truncation=True, + return_attention_mask=True, + add_special_tokens=True, + return_tensors="pt", + ) + negative_prompt_attention_mask = uncond_input.attention_mask + negative_prompt_attention_mask = negative_prompt_attention_mask.to(device) + + negative_prompt_embeds = self.text_encoder( + uncond_input.input_ids.to(device), + attention_mask=negative_prompt_attention_mask, + ) + negative_prompt_embeds = negative_prompt_embeds[0] + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + + negative_prompt_embeds = negative_prompt_embeds.to( + dtype=dtype, device=device + ) + + negative_prompt_embeds = negative_prompt_embeds.repeat( + 1, num_images_per_prompt, 1 + ) + negative_prompt_embeds = negative_prompt_embeds.view( + batch_size * num_images_per_prompt, seq_len, -1 + ) + + negative_prompt_attention_mask = negative_prompt_attention_mask.repeat( + 1, num_images_per_prompt + ) + negative_prompt_attention_mask = negative_prompt_attention_mask.view( + bs_embed * num_images_per_prompt, -1 + ) + else: + negative_prompt_embeds = None + negative_prompt_attention_mask = None + + return ( + prompt_embeds, + prompt_attention_mask, + negative_prompt_embeds, + negative_prompt_attention_mask, + ) + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set( + inspect.signature(self.scheduler.step).parameters.keys() + ) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set( + inspect.signature(self.scheduler.step).parameters.keys() + ) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs( + self, + prompt, + height, + width, + negative_prompt, + prompt_embeds=None, + negative_prompt_embeds=None, + prompt_attention_mask=None, + negative_prompt_attention_mask=None, + ): + if height % 8 != 0 or width % 8 != 0: + raise ValueError( + f"`height` and `width` have to be divisible by 8 but are {height} and {width}." + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and ( + not isinstance(prompt, str) and not isinstance(prompt, list) + ): + raise ValueError( + f"`prompt` has to be of type `str` or `list` but is {type(prompt)}" + ) + + if prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and prompt_attention_mask is None: + raise ValueError( + "Must provide `prompt_attention_mask` when specifying `prompt_embeds`." + ) + + if ( + negative_prompt_embeds is not None + and negative_prompt_attention_mask is None + ): + raise ValueError( + "Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + if prompt_attention_mask.shape != negative_prompt_attention_mask.shape: + raise ValueError( + "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but" + f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`" + f" {negative_prompt_attention_mask.shape}." + ) + + # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing + def _text_preprocessing(self, text, clean_caption=False): + if clean_caption and not is_bs4_available(): + logger.warn( + BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`") + ) + logger.warn("Setting `clean_caption` to False...") + clean_caption = False + + if clean_caption and not is_ftfy_available(): + logger.warn( + BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`") + ) + logger.warn("Setting `clean_caption` to False...") + clean_caption = False + + if not isinstance(text, (tuple, list)): + text = [text] + + def process(text: str): + if clean_caption: + text = self._clean_caption(text) + text = self._clean_caption(text) + else: + text = text.lower().strip() + return text + + return [process(t) for t in text] + + # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption + def _clean_caption(self, caption): + caption = str(caption) + caption = ul.unquote_plus(caption) + caption = caption.strip().lower() + caption = re.sub("", "person", caption) + # urls: + caption = re.sub( + r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa + "", + caption, + ) # regex for urls + caption = re.sub( + r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa + "", + caption, + ) # regex for urls + # html: + caption = BeautifulSoup(caption, features="html.parser").text + + # @ + caption = re.sub(r"@[\w\d]+\b", "", caption) + + # 31C0—31EF CJK Strokes + # 31F0—31FF Katakana Phonetic Extensions + # 3200—32FF Enclosed CJK Letters and Months + # 3300—33FF CJK Compatibility + # 3400—4DBF CJK Unified Ideographs Extension A + # 4DC0—4DFF Yijing Hexagram Symbols + # 4E00—9FFF CJK Unified Ideographs + caption = re.sub(r"[\u31c0-\u31ef]+", "", caption) + caption = re.sub(r"[\u31f0-\u31ff]+", "", caption) + caption = re.sub(r"[\u3200-\u32ff]+", "", caption) + caption = re.sub(r"[\u3300-\u33ff]+", "", caption) + caption = re.sub(r"[\u3400-\u4dbf]+", "", caption) + caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption) + caption = re.sub(r"[\u4e00-\u9fff]+", "", caption) + ####################################################### + + # все виды тире / all types of dash --> "-" + caption = re.sub( + r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa + "-", + caption, + ) + + # кавычки к одному стандарту + caption = re.sub(r"[`´«»“”¨]", '"', caption) + caption = re.sub(r"[‘’]", "'", caption) + + # " + caption = re.sub(r""?", "", caption) + # & + caption = re.sub(r"&", "", caption) + + # ip adresses: + caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption) + + # article ids: + caption = re.sub(r"\d:\d\d\s+$", "", caption) + + # \n + caption = re.sub(r"\\n", " ", caption) + + # "#123" + caption = re.sub(r"#\d{1,3}\b", "", caption) + # "#12345.." + caption = re.sub(r"#\d{5,}\b", "", caption) + # "123456.." + caption = re.sub(r"\b\d{6,}\b", "", caption) + # filenames: + caption = re.sub( + r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption + ) + + # + caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT""" + caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT""" + + caption = re.sub( + self.bad_punct_regex, r" ", caption + ) # ***AUSVERKAUFT***, #AUSVERKAUFT + caption = re.sub(r"\s+\.\s+", r" ", caption) # " . " + + # this-is-my-cute-cat / this_is_my_cute_cat + regex2 = re.compile(r"(?:\-|\_)") + if len(re.findall(regex2, caption)) > 3: + caption = re.sub(regex2, " ", caption) + + caption = ftfy.fix_text(caption) + caption = html.unescape(html.unescape(caption)) + + caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640 + caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc + caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231 + + caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption) + caption = re.sub(r"(free\s)?download(\sfree)?", "", caption) + caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption) + caption = re.sub( + r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption + ) + caption = re.sub(r"\bpage\s+\d+\b", "", caption) + + caption = re.sub( + r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption + ) # j2d1a2a... + + caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption) + + caption = re.sub(r"\b\s+\:\s+", r": ", caption) + caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption) + caption = re.sub(r"\s+", " ", caption) + + caption.strip() + + caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption) + caption = re.sub(r"^[\'\_,\-\:;]", r"", caption) + caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption) + caption = re.sub(r"^\.\S+$", "", caption) + + return caption.strip() + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents + def prepare_latents( + self, + batch_size, + num_latent_channels, + num_patches, + dtype, + device, + generator, + latents=None, + latents_mask=None, + ): + shape = ( + batch_size, + num_patches // math.prod(self.patchifier.patch_size), + num_latent_channels, + ) + + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if latents is None: + latents = randn_tensor( + shape, generator=generator, device=device, dtype=dtype + ) + elif latents_mask is not None: + noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = latents * latents_mask[..., None] + noise * ( + 1 - latents_mask[..., None] + ) + else: + latents = latents.to(device) + + # scale the initial noise by the standard deviation required by the scheduler + latents = latents * self.scheduler.init_noise_sigma + return latents + + @staticmethod + def classify_height_width_bin( + height: int, width: int, ratios: dict + ) -> Tuple[int, int]: + """Returns binned height and width.""" + ar = float(height / width) + closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar)) + default_hw = ratios[closest_ratio] + return int(default_hw[0]), int(default_hw[1]) + + @staticmethod + def resize_and_crop_tensor( + samples: torch.Tensor, new_width: int, new_height: int + ) -> torch.Tensor: + n_frames, orig_height, orig_width = samples.shape[-3:] + + # Check if resizing is needed + if orig_height != new_height or orig_width != new_width: + ratio = max(new_height / orig_height, new_width / orig_width) + resized_width = int(orig_width * ratio) + resized_height = int(orig_height * ratio) + + # Resize + samples = rearrange(samples, "b c n h w -> (b n) c h w") + samples = F.interpolate( + samples, + size=(resized_height, resized_width), + mode="bilinear", + align_corners=False, + ) + samples = rearrange(samples, "(b n) c h w -> b c n h w", n=n_frames) + + # Center Crop + start_x = (resized_width - new_width) // 2 + end_x = start_x + new_width + start_y = (resized_height - new_height) // 2 + end_y = start_y + new_height + samples = samples[..., start_y:end_y, start_x:end_x] + + return samples + + @torch.no_grad() + def __call__( + self, + height: int, + width: int, + num_frames: int, + frame_rate: float, + prompt: Union[str, List[str]] = None, + negative_prompt: str = "", + num_inference_steps: int = 20, + timesteps: List[int] = None, + guidance_scale: float = 4.5, + num_images_per_prompt: Optional[int] = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + prompt_attention_mask: Optional[torch.FloatTensor] = None, + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_prompt_attention_mask: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + clean_caption: bool = True, + media_items: Optional[torch.FloatTensor] = None, + mixed_precision: bool = False, + **kwargs, + ) -> Union[ImagePipelineOutput, Tuple]: + """ + Function invoked when calling the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. + instead. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + num_inference_steps (`int`, *optional*, defaults to 100): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + timesteps (`List[int]`, *optional*): + Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps` + timesteps are used. Must be in descending order. + guidance_scale (`float`, *optional*, defaults to 4.5): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + height (`int`, *optional*, defaults to self.unet.config.sample_size): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to self.unet.config.sample_size): + The width in pixels of the generated image. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to + [`schedulers.DDIMScheduler`], will be ignored for others. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor will ge generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings. + negative_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated negative text embeddings. This negative prompt should be "". If not + provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. + negative_prompt_attention_mask (`torch.FloatTensor`, *optional*): + Pre-generated attention mask for negative text embeddings. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. + callback_on_step_end (`Callable`, *optional*): + A function that calls at the end of each denoising steps during the inference. The function is called + with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, + callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by + `callback_on_step_end_tensor_inputs`. + clean_caption (`bool`, *optional*, defaults to `True`): + Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to + be installed. If the dependencies are not installed, the embeddings will be created from the raw + prompt. + use_resolution_binning (`bool` defaults to `True`): + If set to `True`, the requested height and width are first mapped to the closest resolutions using + `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to + the requested resolution. Useful for generating non-square images. + + Examples: + + Returns: + [`~pipelines.ImagePipelineOutput`] or `tuple`: + If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is + returned where the first element is a list with the generated images + """ + if "mask_feature" in kwargs: + deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version." + deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False) + + is_video = kwargs.get("is_video", False) + self.check_inputs( + prompt, + height, + width, + negative_prompt, + prompt_embeds, + negative_prompt_embeds, + prompt_attention_mask, + negative_prompt_attention_mask, + ) + + # 2. Default height and width to transformer + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + do_classifier_free_guidance = guidance_scale > 1.0 + + # 3. Encode input prompt + ( + prompt_embeds, + prompt_attention_mask, + negative_prompt_embeds, + negative_prompt_attention_mask, + ) = self.encode_prompt( + prompt, + do_classifier_free_guidance, + negative_prompt=negative_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + prompt_attention_mask=prompt_attention_mask, + negative_prompt_attention_mask=negative_prompt_attention_mask, + clean_caption=clean_caption, + ) + if do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) + prompt_attention_mask = torch.cat( + [negative_prompt_attention_mask, prompt_attention_mask], dim=0 + ) + + # 3b. Encode and prepare conditioning data + self.video_scale_factor = self.video_scale_factor if is_video else 1 + conditioning_method = kwargs.get("conditioning_method", None) + vae_per_channel_normalize = kwargs.get("vae_per_channel_normalize", False) + init_latents, conditioning_mask = self.prepare_conditioning( + media_items, + num_frames, + height, + width, + conditioning_method, + vae_per_channel_normalize, + ) + + # 4. Prepare latents. + latent_height = height // self.vae_scale_factor + latent_width = width // self.vae_scale_factor + latent_num_frames = num_frames // self.video_scale_factor + if isinstance(self.vae, CausalVideoAutoencoder) and is_video: + latent_num_frames += 1 + latent_frame_rate = frame_rate / self.video_scale_factor + num_latent_patches = latent_height * latent_width * latent_num_frames + latents = self.prepare_latents( + batch_size=batch_size * num_images_per_prompt, + num_latent_channels=self.transformer.config.in_channels, + num_patches=num_latent_patches, + dtype=prompt_embeds.dtype, + device=device, + generator=generator, + latents=init_latents, + latents_mask=conditioning_mask, + ) + if conditioning_mask is not None and is_video: + assert num_images_per_prompt == 1 + conditioning_mask = ( + torch.cat([conditioning_mask] * 2) + if do_classifier_free_guidance + else conditioning_mask + ) + + # 5. Prepare timesteps + retrieve_timesteps_kwargs = {} + if isinstance(self.scheduler, TimestepShifter): + retrieve_timesteps_kwargs["samples"] = latents + timesteps, num_inference_steps = retrieve_timesteps( + self.scheduler, + num_inference_steps, + device, + timesteps, + **retrieve_timesteps_kwargs, + ) + + # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 7. Denoising loop + num_warmup_steps = max( + len(timesteps) - num_inference_steps * self.scheduler.order, 0 + ) + + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + latent_model_input = ( + torch.cat([latents] * 2) if do_classifier_free_guidance else latents + ) + latent_model_input = self.scheduler.scale_model_input( + latent_model_input, t + ) + + latent_frame_rates = ( + torch.ones( + latent_model_input.shape[0], 1, device=latent_model_input.device + ) + * latent_frame_rate + ) + + current_timestep = t + if not torch.is_tensor(current_timestep): + # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can + # This would be a good case for the `match` statement (Python 3.10+) + is_mps = latent_model_input.device.type == "mps" + if isinstance(current_timestep, float): + dtype = torch.float32 if is_mps else torch.float64 + else: + dtype = torch.int32 if is_mps else torch.int64 + current_timestep = torch.tensor( + [current_timestep], + dtype=dtype, + device=latent_model_input.device, + ) + elif len(current_timestep.shape) == 0: + current_timestep = current_timestep[None].to( + latent_model_input.device + ) + # broadcast to batch dimension in a way that's compatible with ONNX/Core ML + current_timestep = current_timestep.expand( + latent_model_input.shape[0] + ).unsqueeze(-1) + scale_grid = ( + ( + 1 / latent_frame_rates, + self.vae_scale_factor, + self.vae_scale_factor, + ) + if self.transformer.use_rope + else None + ) + indices_grid = self.patchifier.get_grid( + orig_num_frames=latent_num_frames, + orig_height=latent_height, + orig_width=latent_width, + batch_size=latent_model_input.shape[0], + scale_grid=scale_grid, + device=latents.device, + ) + + if conditioning_mask is not None: + current_timestep = current_timestep * (1 - conditioning_mask) + # Choose the appropriate context manager based on `mixed_precision` + if mixed_precision: + if "xla" in device.type: + raise NotImplementedError( + "Mixed precision is not supported yet on XLA devices." + ) + + context_manager = torch.autocast(device.type, dtype=torch.bfloat16) + else: + context_manager = nullcontext() # Dummy context manager + + # predict noise model_output + with context_manager: + noise_pred = self.transformer( + latent_model_input.to(self.transformer.dtype), + indices_grid, + encoder_hidden_states=prompt_embeds.to(self.transformer.dtype), + encoder_attention_mask=prompt_attention_mask, + timestep=current_timestep, + return_dict=False, + )[0] + + # perform guidance + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * ( + noise_pred_text - noise_pred_uncond + ) + current_timestep, _ = current_timestep.chunk(2) + + # learned sigma + if ( + self.transformer.config.out_channels // 2 + == self.transformer.config.in_channels + ): + noise_pred = noise_pred.chunk(2, dim=1)[0] + + # compute previous image: x_t -> x_t-1 + latents = self.scheduler.step( + noise_pred, + t if current_timestep is None else current_timestep, + latents, + **extra_step_kwargs, + return_dict=False, + )[0] + + # call the callback, if provided + if i == len(timesteps) - 1 or ( + (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 + ): + progress_bar.update() + + if callback_on_step_end is not None: + callback_on_step_end(self, i, t, {}) + + latents = self.patchifier.unpatchify( + latents=latents, + output_height=latent_height, + output_width=latent_width, + output_num_frames=latent_num_frames, + out_channels=self.transformer.in_channels + // math.prod(self.patchifier.patch_size), + ) + if output_type != "latent": + image = vae_decode( + latents, + self.vae, + is_video, + vae_per_channel_normalize=kwargs["vae_per_channel_normalize"], + ) + image = self.image_processor.postprocess(image, output_type=output_type) + + else: + image = latents + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image,) + + return ImagePipelineOutput(images=image) + + def prepare_conditioning( + self, + media_items: torch.Tensor, + num_frames: int, + height: int, + width: int, + method: ConditioningMethod = ConditioningMethod.UNCONDITIONAL, + vae_per_channel_normalize: bool = False, + ) -> Tuple[torch.Tensor, torch.Tensor]: + """ + Prepare the conditioning data for the video generation. If an input media item is provided, encode it + and set the conditioning_mask to indicate which tokens to condition on. Input media item should have + the same height and width as the generated video. + + Args: + media_items (torch.Tensor): media items to condition on (images or videos) + num_frames (int): number of frames to generate + height (int): height of the generated video + width (int): width of the generated video + method (ConditioningMethod, optional): conditioning method to use. Defaults to ConditioningMethod.UNCONDITIONAL. + vae_per_channel_normalize (bool, optional): whether to normalize the input to the VAE per channel. Defaults to False. + + Returns: + Tuple[torch.Tensor, torch.Tensor]: the conditioning latents and the conditioning mask + """ + if media_items is None or method == ConditioningMethod.UNCONDITIONAL: + return None, None + + assert media_items.ndim == 5 + assert height == media_items.shape[-2] and width == media_items.shape[-1] + + # Encode the input video and repeat to the required number of frame-tokens + init_latents = vae_encode( + media_items.to(dtype=self.vae.dtype, device=self.vae.device), + self.vae, + vae_per_channel_normalize=vae_per_channel_normalize, + ).float() + + init_len, target_len = ( + init_latents.shape[2], + num_frames // self.video_scale_factor, + ) + if isinstance(self.vae, CausalVideoAutoencoder): + target_len += 1 + init_latents = init_latents[:, :, :target_len] + if target_len > init_len: + repeat_factor = (target_len + init_len - 1) // init_len # Ceiling division + init_latents = init_latents.repeat(1, 1, repeat_factor, 1, 1)[ + :, :, :target_len + ] + + # Prepare the conditioning mask (1.0 = condition on this token) + b, n, f, h, w = init_latents.shape + conditioning_mask = torch.zeros([b, 1, f, h, w], device=init_latents.device) + if method == ConditioningMethod.FIRST_FRAME: + conditioning_mask[:, :, 0] = 1.0 + + # Patchify the init latents and the mask + conditioning_mask = self.patchifier.patchify(conditioning_mask).squeeze(-1) + init_latents = self.patchifier.patchify(latents=init_latents) + return init_latents, conditioning_mask diff --git a/ltx_video/schedulers/__init__.py b/ltx_video/schedulers/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/ltx_video/schedulers/rf.py b/ltx_video/schedulers/rf.py new file mode 100644 index 0000000..68929b0 --- /dev/null +++ b/ltx_video/schedulers/rf.py @@ -0,0 +1,296 @@ +import math +from abc import ABC, abstractmethod +from dataclasses import dataclass +from typing import Callable, Optional, Tuple, Union + +import torch +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.schedulers.scheduling_utils import SchedulerMixin +from diffusers.utils import BaseOutput +from torch import Tensor + +from ltx_video.utils.torch_utils import append_dims + + +def simple_diffusion_resolution_dependent_timestep_shift( + samples: Tensor, + timesteps: Tensor, + n: int = 32 * 32, +) -> Tensor: + if len(samples.shape) == 3: + _, m, _ = samples.shape + elif len(samples.shape) in [4, 5]: + m = math.prod(samples.shape[2:]) + else: + raise ValueError( + "Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)" + ) + snr = (timesteps / (1 - timesteps)) ** 2 + shift_snr = torch.log(snr) + 2 * math.log(m / n) + shifted_timesteps = torch.sigmoid(0.5 * shift_snr) + + return shifted_timesteps + + +def time_shift(mu: float, sigma: float, t: Tensor): + return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) + + +def get_normal_shift( + n_tokens: int, + min_tokens: int = 1024, + max_tokens: int = 4096, + min_shift: float = 0.95, + max_shift: float = 2.05, +) -> Callable[[float], float]: + m = (max_shift - min_shift) / (max_tokens - min_tokens) + b = min_shift - m * min_tokens + return m * n_tokens + b + + +def strech_shifts_to_terminal(shifts: Tensor, terminal=0.1): + """ + Stretch a function (given as sampled shifts) so that its final value matches the given terminal value + using the provided formula. + + Parameters: + - shifts (Tensor): The samples of the function to be stretched (PyTorch Tensor). + - terminal (float): The desired terminal value (value at the last sample). + + Returns: + - Tensor: The stretched shifts such that the final value equals `terminal`. + """ + if shifts.numel() == 0: + raise ValueError("The 'shifts' tensor must not be empty.") + + # Ensure terminal value is valid + if terminal <= 0 or terminal >= 1: + raise ValueError("The terminal value must be between 0 and 1 (exclusive).") + + # Transform the shifts using the given formula + one_minus_z = 1 - shifts + scale_factor = one_minus_z[-1] / (1 - terminal) + stretched_shifts = 1 - (one_minus_z / scale_factor) + + return stretched_shifts + + +def sd3_resolution_dependent_timestep_shift( + samples: Tensor, timesteps: Tensor, target_shift_terminal: Optional[float] = None +) -> Tensor: + """ + Shifts the timestep schedule as a function of the generated resolution. + + In the SD3 paper, the authors empirically how to shift the timesteps based on the resolution of the target images. + For more details: https://arxiv.org/pdf/2403.03206 + + In Flux they later propose a more dynamic resolution dependent timestep shift, see: + https://github.com/black-forest-labs/flux/blob/87f6fff727a377ea1c378af692afb41ae84cbe04/src/flux/sampling.py#L66 + + + Args: + samples (Tensor): A batch of samples with shape (batch_size, channels, height, width) or + (batch_size, channels, frame, height, width). + timesteps (Tensor): A batch of timesteps with shape (batch_size,). + target_shift_terminal (float): The target terminal value for the shifted timesteps. + + Returns: + Tensor: The shifted timesteps. + """ + if len(samples.shape) == 3: + _, m, _ = samples.shape + elif len(samples.shape) in [4, 5]: + m = math.prod(samples.shape[2:]) + else: + raise ValueError( + "Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)" + ) + + shift = get_normal_shift(m) + time_shifts = time_shift(shift, 1, timesteps) + if target_shift_terminal is not None: # Stretch the shifts to the target terminal + time_shifts = strech_shifts_to_terminal(time_shifts, target_shift_terminal) + return time_shifts + + +class TimestepShifter(ABC): + @abstractmethod + def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor: + pass + + +@dataclass +class RectifiedFlowSchedulerOutput(BaseOutput): + """ + Output class for the scheduler's step function output. + + Args: + prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): + Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the + denoising loop. + pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): + The predicted denoised sample (x_{0}) based on the model output from the current timestep. + `pred_original_sample` can be used to preview progress or for guidance. + """ + + prev_sample: torch.FloatTensor + pred_original_sample: Optional[torch.FloatTensor] = None + + +class RectifiedFlowScheduler(SchedulerMixin, ConfigMixin, TimestepShifter): + order = 1 + + @register_to_config + def __init__( + self, + num_train_timesteps=1000, + shifting: Optional[str] = None, + base_resolution: int = 32**2, + target_shift_terminal: Optional[float] = None, + ): + super().__init__() + self.init_noise_sigma = 1.0 + self.num_inference_steps = None + self.timesteps = self.sigmas = torch.linspace( + 1, 1 / num_train_timesteps, num_train_timesteps + ) + self.delta_timesteps = self.timesteps - torch.cat( + [self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])] + ) + self.shifting = shifting + self.base_resolution = base_resolution + self.target_shift_terminal = target_shift_terminal + + def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor: + if self.shifting == "SD3": + return sd3_resolution_dependent_timestep_shift( + samples, timesteps, self.target_shift_terminal + ) + elif self.shifting == "SimpleDiffusion": + return simple_diffusion_resolution_dependent_timestep_shift( + samples, timesteps, self.base_resolution + ) + return timesteps + + def set_timesteps( + self, + num_inference_steps: int, + samples: Tensor, + device: Union[str, torch.device] = None, + ): + """ + Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. + + Args: + num_inference_steps (`int`): The number of diffusion steps used when generating samples. + samples (`Tensor`): A batch of samples with shape. + device (`Union[str, torch.device]`, *optional*): The device to which the timesteps tensor will be moved. + """ + num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps) + timesteps = torch.linspace(1, 1 / num_inference_steps, num_inference_steps).to( + device + ) + self.timesteps = self.shift_timesteps(samples, timesteps) + self.delta_timesteps = self.timesteps - torch.cat( + [self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])] + ) + self.num_inference_steps = num_inference_steps + self.sigmas = self.timesteps + + def scale_model_input( + self, sample: torch.FloatTensor, timestep: Optional[int] = None + ) -> torch.FloatTensor: + # pylint: disable=unused-argument + """ + Ensures interchangeability with schedulers that need to scale the denoising model input depending on the + current timestep. + + Args: + sample (`torch.FloatTensor`): input sample + timestep (`int`, optional): current timestep + + Returns: + `torch.FloatTensor`: scaled input sample + """ + return sample + + def step( + self, + model_output: torch.FloatTensor, + timestep: torch.FloatTensor, + sample: torch.FloatTensor, + eta: float = 0.0, + use_clipped_model_output: bool = False, + generator=None, + variance_noise: Optional[torch.FloatTensor] = None, + return_dict: bool = True, + ) -> Union[RectifiedFlowSchedulerOutput, Tuple]: + # pylint: disable=unused-argument + """ + Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion + process from the learned model outputs (most often the predicted noise). + + Args: + model_output (`torch.FloatTensor`): + The direct output from learned diffusion model. + timestep (`float`): + The current discrete timestep in the diffusion chain. + sample (`torch.FloatTensor`): + A current instance of a sample created by the diffusion process. + eta (`float`): + The weight of noise for added noise in diffusion step. + use_clipped_model_output (`bool`, defaults to `False`): + If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary + because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no + clipping has happened, "corrected" `model_output` would coincide with the one provided as input and + `use_clipped_model_output` has no effect. + generator (`torch.Generator`, *optional*): + A random number generator. + variance_noise (`torch.FloatTensor`): + Alternative to generating noise with `generator` by directly providing the noise for the variance + itself. Useful for methods such as [`CycleDiffusion`]. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`. + + Returns: + [`~schedulers.scheduling_utils.RectifiedFlowSchedulerOutput`] or `tuple`: + If return_dict is `True`, [`~schedulers.rf_scheduler.RectifiedFlowSchedulerOutput`] is returned, + otherwise a tuple is returned where the first element is the sample tensor. + """ + if self.num_inference_steps is None: + raise ValueError( + "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" + ) + + if timestep.ndim == 0: + # Global timestep + current_index = (self.timesteps - timestep).abs().argmin() + dt = self.delta_timesteps.gather(0, current_index.unsqueeze(0)) + else: + # Timestep per token + assert timestep.ndim == 2 + current_index = ( + (self.timesteps[:, None, None] - timestep[None]).abs().argmin(dim=0) + ) + dt = self.delta_timesteps[current_index] + # Special treatment for zero timestep tokens - set dt to 0 so prev_sample = sample + dt = torch.where(timestep == 0.0, torch.zeros_like(dt), dt)[..., None] + + prev_sample = sample - dt * model_output + + if not return_dict: + return (prev_sample,) + + return RectifiedFlowSchedulerOutput(prev_sample=prev_sample) + + def add_noise( + self, + original_samples: torch.FloatTensor, + noise: torch.FloatTensor, + timesteps: torch.FloatTensor, + ) -> torch.FloatTensor: + sigmas = timesteps + sigmas = append_dims(sigmas, original_samples.ndim) + alphas = 1 - sigmas + noisy_samples = alphas * original_samples + sigmas * noise + return noisy_samples diff --git a/ltx_video/utils/__init__.py b/ltx_video/utils/__init__.py new file mode 100644 index 0000000..e69de29 diff --git a/ltx_video/utils/conditioning_method.py b/ltx_video/utils/conditioning_method.py new file mode 100644 index 0000000..20befcb --- /dev/null +++ b/ltx_video/utils/conditioning_method.py @@ -0,0 +1,6 @@ +from enum import Enum + + +class ConditioningMethod(Enum): + UNCONDITIONAL = "unconditional" + FIRST_FRAME = "first_frame" diff --git a/ltx_video/utils/torch_utils.py b/ltx_video/utils/torch_utils.py new file mode 100644 index 0000000..991b07c --- /dev/null +++ b/ltx_video/utils/torch_utils.py @@ -0,0 +1,25 @@ +import torch +from torch import nn + + +def append_dims(x: torch.Tensor, target_dims: int) -> torch.Tensor: + """Appends dimensions to the end of a tensor until it has target_dims dimensions.""" + dims_to_append = target_dims - x.ndim + if dims_to_append < 0: + raise ValueError( + f"input has {x.ndim} dims but target_dims is {target_dims}, which is less" + ) + elif dims_to_append == 0: + return x + return x[(...,) + (None,) * dims_to_append] + + +class Identity(nn.Module): + """A placeholder identity operator that is argument-insensitive.""" + + def __init__(self, *args, **kwargs) -> None: # pylint: disable=unused-argument + super().__init__() + + # pylint: disable=unused-argument + def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor: + return x diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000..5295986 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,34 @@ +[build-system] +requires = ["setuptools>=42", "wheel"] +build-backend = "setuptools.build_meta" + +[project] +name = "ltx-video" +version = "0.1.0" +description = "A package for LTX-Video model" +authors = [ + { name = "Sapir Weissbuch", email = "sapir@lightricks.com" } +] +requires-python = ">=3.10" +readme = "README.md" +classifiers = [ + "Programming Language :: Python :: 3", + "License :: OSI Approved :: MIT License", + "Operating System :: OS Independent" +] +dependencies = [ + "torch>=2.1.0", + "diffusers~=0.28.2", + "transformers~=4.44.2", + "sentencepiece~=0.1.96", + "huggingface-hub~=0.25.2", + "einops" +] + +[project.optional-dependencies] +# Instead of thinking of them as optional, think of them as specific modes +inference-script = [ + "accelerate", + "matplotlib", + "imageio[ffmpeg]" +]