-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy path10x_HPC-n3_step03_markerDetxn_MNT.R
executable file
·430 lines (344 loc) · 19.3 KB
/
10x_HPC-n3_step03_markerDetxn_MNT.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
### MNT 10x snRNA-seq workflow: step 03 - marker detection
### **Region-specific analyses**
### - (3x) HPC samples from: Br5161 & Br5212 & Br5287
### Initiated MNT 13Mar2020
#####################################################################
library(SingleCellExperiment)
library(EnsDb.Hsapiens.v86)
library(scater)
library(scran)
library(batchelor)
library(DropletUtils)
library(jaffelab)
library(limma)
source("plotExpressionCustom.R")
### Palette taken from `scater`
tableau10medium = c("#729ECE", "#FF9E4A", "#67BF5C", "#ED665D",
"#AD8BC9", "#A8786E", "#ED97CA", "#A2A2A2",
"#CDCC5D", "#6DCCDA")
tableau20 = c("#1F77B4", "#AEC7E8", "#FF7F0E", "#FFBB78", "#2CA02C",
"#98DF8A", "#D62728", "#FF9896", "#9467BD", "#C5B0D5",
"#8C564B", "#C49C94", "#E377C2", "#F7B6D2", "#7F7F7F",
"#C7C7C7", "#BCBD22", "#DBDB8D", "#17BECF", "#9EDAE5")
# ===
## Load SCE with new info
load("/dcs04/lieber/marmaypag/Tran_LIBD001/Matt/MNT_thesis/snRNAseq/10x_pilot_FINAL/rdas/revision/regionSpecific_HPC-n3_cleaned-combined_SCE_MNT2021.rda")
# sce.hpc, clusterRefTab.hpc, chosen.hvgs.hpc, ref.sampleInfo
table(sce.hpc$cellType)
# Astro_A Astro_B drop.doublet drop.lowNTx_A drop.lowNTx_B
# 936 234 5 105 19
# Excit_A Excit_B Excit_C Excit_D Excit_E
# 87 421 6 35 6
# Excit_F Excit_G Excit_H Inhib_A Inhib_B
# 29 6 33 300 30
# Inhib_C Inhib_D Micro Mural Oligo
# 5 31 1161 43 5912
# OPC OPC_COP Tcell
# 823 15 26
# First drop decided "drop." clusters (129 nuclei)
sce.hpc <- sce.hpc[ ,-grep("drop.", sce.hpc$cellType)]
sce.hpc$cellType <- droplevels(sce.hpc$cellType)
# Remove 0 genes across all nuclei
sce.hpc <- sce.hpc[!rowSums(assay(sce.hpc, "counts"))==0, ] # keeps same 28764 genes
## Re-create 'logcounts' (don't want to use 'multiBatchNorm's down-scaling across donor 'batches')
# First 'hold' the MBN 'logcounts' for printing
sce.hold <- sce.hpc
assay(sce.hpc, "logcounts") <- NULL
sizeFactors(sce.hpc) <- NULL
sce.hpc <- logNormCounts(sce.hpc)
### First make a list of Boolean param / cell subtype ===
# Will use this to assess more 'valid', non-noise-driving markers
cellSubtype.idx <- splitit(sce.hpc$cellType)
medianNon0.hpc <- lapply(cellSubtype.idx, function(x){
apply(as.matrix(assay(sce.hpc, "logcounts")), 1, function(y){
median(y[x]) > 0
})
})
sapply(medianNon0.hpc, table)
## Traditional t-test implementation ===
mod <- with(colData(sce.hpc), model.matrix(~ donor))
mod <- mod[ , -1, drop=F] # intercept otherwise automatically dropped by `findMarkers()`
# Run pairwise t-tests
markers.hpc.t.pw <- findMarkers(sce.hpc, groups=sce.hpc$cellType,
assay.type="logcounts", design=mod, test="t",
direction="up", pval.type="all", full.stats=T)
sapply(markers.hpc.t.pw, function(x){table(x$FDR<0.05)})
# Astro_A Astro_B Excit_A Excit_B Excit_C Excit_D Excit_E Excit_F Excit_G
# FALSE 28622 28634 28701 28741 28534 28685 28653 28605 28576
# TRUE 142 130 63 23 230 79 111 159 188
# Excit_H Inhib_A Inhib_B Inhib_C Inhib_D Micro Mural Oligo OPC OPC_COP
# FALSE 28607 28757 28664 28666 28690 28474 28383 28673 28701 28561
# TRUE 157 7 100 98 74 290 381 91 63 203
# Tcell
# FALSE 28294
# TRUE 470
## WMW: Blocking on donor (this test doesn't take 'design=' argument) ===
markers.hpc.wilcox.block <- findMarkers(sce.hpc, groups=sce.hpc$cellType,
assay.type="logcounts", block=sce.hpc$donor, test="wilcox",
direction="up", pval.type="all", full.stats=T)
sapply(markers.hpc.wilcox.block, function(x){table(x$FDR<0.05)})
# No results... disregard these
## Binomial ===
markers.hpc.binom.block <- findMarkers(sce.hpc, groups=sce.hpc$cellType,
assay.type="logcounts", block=sce.hpc$donor, test="binom",
direction="up", pval.type="all", full.stats=T)
sapply(markers.hpc.binom.block, function(x){table(x$FDR<0.05)})
# Also no results... disregard these
# Add respective 'non0median' column to the stats for each set of markers
for(i in names(markers.hpc.t.pw)){
markers.hpc.t.pw[[i]] <- cbind(markers.hpc.t.pw[[i]],
medianNon0.hpc[[i]][match(rownames(markers.hpc.t.pw[[i]]),
names(medianNon0.hpc[[i]]))])
colnames(markers.hpc.t.pw[[i]])[23] <- "non0median"
}
sapply(markers.hpc.t.pw, function(x){table(x$FDR<0.05 & x$non0median == TRUE)["TRUE"]})
# Astro_A.TRUE Astro_B.TRUE Excit_A.TRUE Excit_B.TRUE Excit_C.TRUE Excit_D.TRUE
# 124 83 46 13 57 40
# Excit_E.TRUE Excit_F.TRUE Excit_G.TRUE Excit_H.TRUE Inhib_A.TRUE Inhib_B.TRUE
# 48 61 55 52 1 44
# Inhib_C.TRUE Inhib_D.TRUE Micro.TRUE Mural.TRUE Oligo.TRUE OPC.TRUE
# 30 27 193 59 91 53
# OPC_COP.TRUE Tcell.TRUE
# 101 114
## Save all these for future reference ===
save(markers.hpc.t.pw, #markers.hpc.wilcox.block, #markers.hpc.binom.block,
medianNon0.hpc,
file="rdas/revision/markers-stats_HPC-n3_findMarkers-SN-LEVEL_MNT2021.rda")
# Print these to pngs
markerList.t.pw <- lapply(markers.hpc.t.pw, function(x){
rownames(x)[x$FDR < 0.05 & x$non0median == TRUE]
}
)
genes.top40.t <- lapply(markerList.t.pw, function(x){head(x, n=40)})
#dir.create("pdfs/revision/HPC/")
smaller.set <- names(genes.top40.t)[lengths(genes.top40.t) <= 20]
left.set <- setdiff(names(genes.top40.t), smaller.set)
# Smaller graphical window
for(i in smaller.set){
png(paste0("pdfs/revision/HPC/HPC_t_pairwise_top40markers-", i, "_logExprs_MNT2021.png"), height=950, width=1200)
print(
plotExpressionCustom(sce = sce.hold,
features = genes.top40.t[[i]],
features_name = i,
anno_name = "cellType",
ncol=5, point_alpha=0.4) +
scale_color_manual(values = cell_colors.hpc) +
ggtitle(label=paste0(i, " top markers: single-nucleus-level p.w. t-tests (FDR<0.05)"))
)
dev.off()
}
# 20-40 markers
for(i in left.set){
png(paste0("pdfs/revision/HPC/HPC_t_pairwise_top40markers-", i, "_logExprs_MNT2021.png"), height=1900, width=1200)
print(
plotExpressionCustom(sce = sce.hold,
features = genes.top40.t[[i]],
features_name = i,
anno_name = "cellType",
ncol=5, point_alpha=0.4) +
scale_color_manual(values = cell_colors.hpc) +
ggtitle(label=paste0(i, " top markers: single-nucleus-level p.w. t-tests (FDR<0.05)"))
)
dev.off()
}
#source('plotExpressionCustom.R')
### Cluster-vs-all single-nucleus-level iteration ================================
## Load SCE with new info
load("/dcs04/lieber/marmaypag/Tran_LIBD001/Matt/MNT_thesis/snRNAseq/10x_pilot_FINAL/rdas/revision/regionSpecific_HPC-n3_cleaned-combined_SCE_MNT2021.rda")
# sce.hpc, clusterRefTab.hpc, chosen.hvgs.hpc, ref.sampleInfo
# First drop decided "drop." clusters (129 nuclei)
sce.hpc <- sce.hpc[ ,-grep("drop.", sce.hpc$cellType)]
sce.hpc$cellType <- droplevels(sce.hpc$cellType)
# Remove 0 genes across all nuclei
sce.hpc <- sce.hpc[!rowSums(assay(sce.hpc, "counts"))==0, ] # keeps same 28764 genes
## Re-create 'logcounts' (don't want to use 'multiBatchNorm's down-scaling across donor 'batches')
# First 'hold' the MBN 'logcounts' for printing
sce.hold <- sce.hpc
assay(sce.hpc, "logcounts") <- NULL
sizeFactors(sce.hpc) <- NULL
sce.hpc <- logNormCounts(sce.hpc)
## Load pw marker stats .rda with the non0median Booleans/cellType
load("rdas/revision/markers-stats_HPC-n3_findMarkers-SN-LEVEL_MNT2021.rda", verbose=T)
# markers.hpc.t.pw, medianNon0.hpc
## Traditional t-test with design as in PB'd/limma approach ===
mod <- with(colData(sce.hpc), model.matrix(~ donor))
mod <- mod[ , -1, drop=F] # intercept otherwise automatically dropped by `findMarkers()`
markers.hpc.t.1vAll <- list()
for(i in levels(sce.hpc$cellType)){
# Make temporary contrast
sce.hpc$contrast <- ifelse(sce.hpc$cellType==i, 1, 0)
# Test cluster vs. all others
markers.hpc.t.1vAll[[i]] <- findMarkers(sce.hpc, groups=sce.hpc$contrast,
assay.type="logcounts", design=mod, test="t",
std.lfc=TRUE,
direction="up", pval.type="all", full.stats=T)
}
## Since all other stats are the same, and don't really use the non-standardized
# logFC, just generate one object, unlike before
class(markers.hpc.t.1vAll[["Oligo"]])
# a SimpleList of length 2, named "0" and "1" (from the temporary 'contrast')
# -> we want the second entry, named "1"
# (for other purposes, might be interesting to look into that "0" entry, which
# is basically what genes are depleted in the cell type of interest)
sapply(markers.hpc.t.1vAll, function(x){
table(x[["1"]]$stats.0$log.FDR < log(.001))
})
# Astro_A Astro_B Excit_A Excit_B Excit_C Excit_D Excit_E Excit_F Excit_G Excit_H
# FALSE 23674 25280 24676 21295 27759 27031 27943 25816 28162 26815
# TRUE 5090 3484 4088 7469 1005 1733 821 2948 602 1949
# Inhib_A Inhib_B Inhib_C Inhib_D Micro Mural Oligo OPC OPC_COP Tcell
# FALSE 21767 26520 28193 26797 23995 26934 25713 24731 28086 27391
# TRUE 6997 2244 571 1967 4769 1830 3051 4033 678 1373
# Do some reorganizing
markers.hpc.t.1vAll <- lapply(markers.hpc.t.1vAll, function(x){
# Basically take the 'stats.[1 or 0]' since is redundant with the 'summary'-level stats
lapply(x, function(y){ y[ ,4] })
})
# Re-name std.lfc column and the entries; add non-0-median info
for(i in names(markers.hpc.t.1vAll)){
colnames(markers.hpc.t.1vAll[[i]][["0"]])[1] <- "std.logFC"
colnames(markers.hpc.t.1vAll[[i]][["1"]])[1] <- "std.logFC"
# Add non0median Boolean - might be informative for both sets of stats
markers.hpc.t.1vAll[[i]][["0"]] <- cbind(markers.hpc.t.1vAll[[i]][["0"]],
medianNon0.hpc[[i]][match(rownames(markers.hpc.t.1vAll[[i]][["0"]]),
names(medianNon0.hpc[[i]]))])
colnames(markers.hpc.t.1vAll[[i]][["0"]])[4] <- "non0median"
# "1" aka 'enriched'
markers.hpc.t.1vAll[[i]][["1"]] <- cbind(markers.hpc.t.1vAll[[i]][["1"]],
medianNon0.hpc[[i]][match(rownames(markers.hpc.t.1vAll[[i]][["1"]]),
names(medianNon0.hpc[[i]]))])
colnames(markers.hpc.t.1vAll[[i]][["1"]])[4] <- "non0median"
# Then re-name the entries to more interpretable, because we'll keeping both contrasts
names(markers.hpc.t.1vAll[[i]]) <- paste0(i,c("_depleted", "_enriched"))
}
## Let's save this along with the previous pairwise results
save(markers.hpc.t.pw, markers.hpc.t.1vAll, medianNon0.hpc,
file="rdas/revision/markers-stats_HPC-n3_findMarkers-SN-LEVEL_MNT2021.rda")
## Print these to pngs
markerList.t.1vAll <- lapply(markers.hpc.t.1vAll, function(x){
rownames(x[[2]])[ x[[2]]$log.FDR < log(0.05) & x[[2]]$non0median==TRUE ]
}
)
genes.top40.t <- lapply(markerList.t.1vAll, function(x){head(x, n=40)})
for(i in names(genes.top40.t)){
png(paste0("pdfs/revision/HPC/HPC_t_1vALL_top40markers-",i,"_logExprs_MNT2021.png"), height=1900, width=1200)
print(
plotExpressionCustom(sce = sce.hold,
features = genes.top40.t[[i]],
features_name = i,
anno_name = "cellType",
ncol=5, point_alpha=0.4) +
scale_color_manual(values = cell_colors.hpc) +
ggtitle(label=paste0(i, " top markers: 'cluster-vs-all-others' t-tests (FDR<0.05)"))
)
dev.off()
}
## How do they intersect?
markerList.t.pw <- lapply(markers.hpc.t.pw, function(x){
rownames(x)[ x$FDR < 0.05 & x$non0median==TRUE ]
}
)
# From pairwise t-tests, FDR < 0.05
lengths(markerList.t.pw)
# From cluster-vs-all others, FDR < 1e6
lengths(markerList.t.1vAll)
# Intersection
sapply(names(markerList.t.pw), function(c){
length(intersect(markerList.t.pw[[c]],
markerList.t.1vAll[[c]]))
})
# Of top 40's:
sapply(names(markerList.t.pw), function(c){
length(intersect(lapply(markerList.t.pw, function(l){head(l,n=40)})[[c]],
lapply(markerList.t.1vAll, function(l){head(l,n=40)})[[c]]
))
})
#Astro_A Astro_B Excit_A Excit_B Excit_C Excit_D Excit_E Excit_F Excit_G Excit_H Inhib_A
# 24 30 16 7 20 21 31 23 23 28 1
#Inhib_B Inhib_C Inhib_D Micro Mural Oligo OPC OPC_COP Tcell
# 22 21 16 31 30 26 17 32 37
## Write these top 40 lists to a csv
names(markerList.t.pw) <- paste0(names(markerList.t.pw),"_pw")
names(markerList.t.1vAll) <- paste0(names(markerList.t.1vAll),"_1vAll")
# Many of the PW results don't have 40 markers:
extend.idx <- names(which(lengths(markerList.t.pw) < 40))
for(i in extend.idx){
markerList.t.pw[[i]] <- c(markerList.t.pw[[i]], rep("", 40-length(markerList.t.pw[[i]])))
}
top40genes <- cbind(sapply(markerList.t.pw, function(x) head(x, n=40)),
sapply(markerList.t.1vAll, function(y) head(y, n=40)))
top40genes <- top40genes[ ,sort(colnames(top40genes))]
write.csv(top40genes, file="tables/revision/top40genesLists_HPC-n3_cellType_SN-LEVEL-tests_MNT2021.csv",
row.names=FALSE)
## Aside: add in 't.stat' as in 'step04' analyses to save for LoHu/LeCo ===
# for(s in names(markers.hpc.t.1vAll)){
# markers.hpc.t.1vAll[[s]]$t.stat <- markers.hpc.t.1vAll[[s]]$std.logFC * sqrt(ncol(sce.hpc))
# }
#
# save(markers.hpc.t.1vAll, markers.hpc.t.pw, sce.hpc,
# file="rdas/markerStats-and-SCE_HPC-n3_sn-level_cleaned_MNTNov2020.rda")
### Session info for 02Jun2021 ============
sessionInfo()
# R version 4.0.4 RC (2021-02-08 r79975)
# Platform: x86_64-pc-linux-gnu (64-bit)
# Running under: CentOS Linux 7 (Core)
#
# Matrix products: default
# BLAS: /jhpce/shared/jhpce/core/conda/miniconda3-4.6.14/envs/svnR-4.0.x/R/4.0.x/lib64/R/lib/libRblas.so
# LAPACK: /jhpce/shared/jhpce/core/conda/miniconda3-4.6.14/envs/svnR-4.0.x/R/4.0.x/lib64/R/lib/libRlapack.so
#
# locale:
# [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
# [4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
# [7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
# [10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#
# attached base packages:
# [1] parallel stats4 stats graphics grDevices datasets utils methods
# [9] base
#
# other attached packages:
# [1] limma_3.46.0 jaffelab_0.99.30 rafalib_1.0.0
# [4] DropletUtils_1.10.3 batchelor_1.6.2 scran_1.18.5
# [7] scater_1.18.6 ggplot2_3.3.3 EnsDb.Hsapiens.v86_2.99.0
# [10] ensembldb_2.14.1 AnnotationFilter_1.14.0 GenomicFeatures_1.42.3
# [13] AnnotationDbi_1.52.0 SingleCellExperiment_1.12.0 SummarizedExperiment_1.20.0
# [16] Biobase_2.50.0 GenomicRanges_1.42.0 GenomeInfoDb_1.26.7
# [19] IRanges_2.24.1 S4Vectors_0.28.1 BiocGenerics_0.36.1
# [22] MatrixGenerics_1.2.1 matrixStats_0.58.0
#
# loaded via a namespace (and not attached):
# [1] googledrive_1.0.1 ggbeeswarm_0.6.0 colorspace_2.0-0
# [4] ellipsis_0.3.2 scuttle_1.0.4 bluster_1.0.0
# [7] XVector_0.30.0 BiocNeighbors_1.8.2 rstudioapi_0.13
# [10] farver_2.1.0 bit64_4.0.5 fansi_0.4.2
# [13] xml2_1.3.2 splines_4.0.4 R.methodsS3_1.8.1
# [16] sparseMatrixStats_1.2.1 cachem_1.0.4 Rsamtools_2.6.0
# [19] ResidualMatrix_1.0.0 dbplyr_2.1.1 R.oo_1.24.0
# [22] HDF5Array_1.18.1 compiler_4.0.4 httr_1.4.2
# [25] dqrng_0.2.1 assertthat_0.2.1 Matrix_1.3-2
# [28] fastmap_1.1.0 lazyeval_0.2.2 BiocSingular_1.6.0
# [31] prettyunits_1.1.1 tools_4.0.4 rsvd_1.0.3
# [34] igraph_1.2.6 gtable_0.3.0 glue_1.4.2
# [37] GenomeInfoDbData_1.2.4 dplyr_1.0.5 rappdirs_0.3.3
# [40] Rcpp_1.0.6 vctrs_0.3.6 Biostrings_2.58.0
# [43] rhdf5filters_1.2.0 rtracklayer_1.50.0 DelayedMatrixStats_1.12.3
# [46] stringr_1.4.0 beachmat_2.6.4 lifecycle_1.0.0
# [49] irlba_2.3.3 statmod_1.4.35 XML_3.99-0.6
# [52] edgeR_3.32.1 zlibbioc_1.36.0 scales_1.1.1
# [55] hms_1.0.0 ProtGenerics_1.22.0 rhdf5_2.34.0
# [58] RColorBrewer_1.1-2 curl_4.3 memoise_2.0.0
# [61] gridExtra_2.3 segmented_1.3-3 biomaRt_2.46.3
# [64] stringi_1.5.3 RSQLite_2.2.7 BiocParallel_1.24.1
# [67] rlang_0.4.10 pkgconfig_2.0.3 bitops_1.0-7
# [70] lattice_0.20-41 purrr_0.3.4 Rhdf5lib_1.12.1
# [73] labeling_0.4.2 GenomicAlignments_1.26.0 cowplot_1.1.1
# [76] bit_4.0.4 tidyselect_1.1.1 magrittr_2.0.1
# [79] R6_2.5.0 generics_0.1.0 DelayedArray_0.16.3
# [82] DBI_1.1.1 pillar_1.6.0 withr_2.4.2
# [85] RCurl_1.98-1.3 tibble_3.1.1 crayon_1.4.1
# [88] utf8_1.2.1 BiocFileCache_1.14.0 viridis_0.6.0
# [91] progress_1.2.2 locfit_1.5-9.4 grid_4.0.4
# [94] blob_1.2.1 digest_0.6.27 R.utils_2.10.1
# [97] openssl_1.4.3 munsell_0.5.0 beeswarm_0.3.1
# [100] viridisLite_0.4.0 vipor_0.4.5 askpass_1.1