-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_augment.py
24 lines (21 loc) · 942 Bytes
/
data_augment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from tensorflow import keras
from tensorflow.keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
img = load_img('dataset/training_set/cats/cat.1.jpg') # this is a PIL image
x = img_to_array(img) # this is a Numpy array with shape (x,x,3)
x = x.reshape((1,) + x.shape) # this is a Numpy array with shape (1,x,x,3)
# the .flow() command below generates batches of randomly transformed images
# and saves the results to the `preview/` directory
i = 0
for batch in datagen.flow(x, batch_size=1,
save_to_dir='preview', save_prefix='cat', save_format='jpeg'):
i += 1
if i > 20:
break # otherwise the generator would loop indefinitely