-
Notifications
You must be signed in to change notification settings - Fork 2
/
vis.py
327 lines (266 loc) · 12.6 KB
/
vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Lint as: python2, python3
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Segmentation results visualization on a given set of images.
See model.py for more details and usage.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os.path
import time
import numpy as np
from six.moves import range
import tensorflow as tf
from tensorflow.contrib import quantize as contrib_quantize
from tensorflow.contrib import training as contrib_training
from deeplab import common
from deeplab import model
from deeplab.datasets import data_generator
from deeplab.utils import save_annotation
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_string('master', '', 'BNS name of the tensorflow server')
# Settings for log directories.
flags.DEFINE_string('vis_logdir', None, 'Where to write the event logs.')
flags.DEFINE_string('checkpoint_dir', None, 'Directory of model checkpoints.')
# Settings for visualizing the model.
flags.DEFINE_integer('vis_batch_size', 1,
'The number of images in each batch during evaluation.')
flags.DEFINE_list('vis_crop_size', '513,513',
'Crop size [height, width] for visualization.')
flags.DEFINE_integer('eval_interval_secs', 60 * 5,
'How often (in seconds) to run evaluation.')
# For `xception_65`, use atrous_rates = [12, 24, 36] if output_stride = 8, or
# rates = [6, 12, 18] if output_stride = 16. For `mobilenet_v2`, use None. Note
# one could use different atrous_rates/output_stride during training/evaluation.
flags.DEFINE_multi_integer('atrous_rates', None,
'Atrous rates for atrous spatial pyramid pooling.')
flags.DEFINE_integer('output_stride', 16,
'The ratio of input to output spatial resolution.')
# Change to [0.5, 0.75, 1.0, 1.25, 1.5, 1.75] for multi-scale test.
flags.DEFINE_multi_float('eval_scales', [1.0],
'The scales to resize images for evaluation.')
# Change to True for adding flipped images during test.
flags.DEFINE_bool('add_flipped_images', False,
'Add flipped images for evaluation or not.')
flags.DEFINE_integer(
'quantize_delay_step', -1,
'Steps to start quantized training. If < 0, will not quantize model.')
# Dataset settings.
flags.DEFINE_string('dataset', 'pascal_voc_seg',
'Name of the segmentation dataset.')
flags.DEFINE_string('vis_split', 'val',
'Which split of the dataset used for visualizing results')
flags.DEFINE_string('dataset_dir', None, 'Where the dataset reside.')
flags.DEFINE_enum('colormap_type', 'pascal', ['pascal', 'cityscapes', 'ade20k'],
'Visualization colormap type.')
flags.DEFINE_boolean('also_save_raw_predictions', False,
'Also save raw predictions.')
flags.DEFINE_integer('max_number_of_iterations', 0,
'Maximum number of visualization iterations. Will loop '
'indefinitely upon nonpositive values.')
# The folder where semantic segmentation predictions are saved.
_SEMANTIC_PREDICTION_SAVE_FOLDER = 'segmentation_results'
# The folder where raw semantic segmentation predictions are saved.
_RAW_SEMANTIC_PREDICTION_SAVE_FOLDER = 'raw_segmentation_results'
# The format to save image.
_IMAGE_FORMAT = '%06d_image'
# The format to save prediction
_PREDICTION_FORMAT = '%06d_prediction'
# To evaluate Cityscapes results on the evaluation server, the labels used
# during training should be mapped to the labels for evaluation.
_CITYSCAPES_TRAIN_ID_TO_EVAL_ID = [7, 8, 11, 12, 13, 17, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 31, 32, 33]
def _convert_train_id_to_eval_id(prediction, train_id_to_eval_id):
"""Converts the predicted label for evaluation.
There are cases where the training labels are not equal to the evaluation
labels. This function is used to perform the conversion so that we could
evaluate the results on the evaluation server.
Args:
prediction: Semantic segmentation prediction.
train_id_to_eval_id: A list mapping from train id to evaluation id.
Returns:
Semantic segmentation prediction whose labels have been changed.
"""
converted_prediction = prediction.copy()
for train_id, eval_id in enumerate(train_id_to_eval_id):
converted_prediction[prediction == train_id] = eval_id
return converted_prediction
def _process_batch(sess, original_images, semantic_predictions, image_names,
image_heights, image_widths, image_id_offset, save_dir,
raw_save_dir, train_id_to_eval_id=None):
"""Evaluates one single batch qualitatively.
Args:
sess: TensorFlow session.
original_images: One batch of original images.
semantic_predictions: One batch of semantic segmentation predictions.
image_names: Image names.
image_heights: Image heights.
image_widths: Image widths.
image_id_offset: Image id offset for indexing images.
save_dir: The directory where the predictions will be saved.
raw_save_dir: The directory where the raw predictions will be saved.
train_id_to_eval_id: A list mapping from train id to eval id.
"""
(original_images,
semantic_predictions,
image_names,
image_heights,
image_widths) = sess.run([original_images, semantic_predictions,
image_names, image_heights, image_widths])
num_image = semantic_predictions.shape[0]
for i in range(num_image):
image_height = np.squeeze(image_heights[i])
image_width = np.squeeze(image_widths[i])
original_image = np.squeeze(original_images[i])
semantic_prediction = np.squeeze(semantic_predictions[i])
crop_semantic_prediction = semantic_prediction[:image_height, :image_width]
# Save image.
save_annotation.save_annotation(
original_image, save_dir, _IMAGE_FORMAT % (image_id_offset + i),
add_colormap=False)
# Save prediction.
save_annotation.save_annotation(
crop_semantic_prediction, save_dir,
_PREDICTION_FORMAT % (image_id_offset + i), add_colormap=True,
colormap_type=FLAGS.colormap_type)
if FLAGS.also_save_raw_predictions:
image_filename = os.path.basename(image_names[i])
if train_id_to_eval_id is not None:
crop_semantic_prediction = _convert_train_id_to_eval_id(
crop_semantic_prediction,
train_id_to_eval_id)
save_annotation.save_annotation(
crop_semantic_prediction, raw_save_dir, image_filename,
add_colormap=False)
def main(unused_argv):
tf.logging.set_verbosity(tf.logging.INFO)
# Get dataset-dependent information.
dataset = data_generator.Dataset(
dataset_name=FLAGS.dataset,
split_name=FLAGS.vis_split,
dataset_dir=FLAGS.dataset_dir,
batch_size=FLAGS.vis_batch_size,
crop_size=[int(sz) for sz in FLAGS.vis_crop_size],
min_resize_value=FLAGS.min_resize_value,
max_resize_value=FLAGS.max_resize_value,
resize_factor=FLAGS.resize_factor,
model_variant=FLAGS.model_variant,
is_training=False,
should_shuffle=False,
should_repeat=False)
train_id_to_eval_id = None
if dataset.dataset_name == data_generator.get_cityscapes_dataset_name():
tf.logging.info('Cityscapes requires converting train_id to eval_id.')
train_id_to_eval_id = _CITYSCAPES_TRAIN_ID_TO_EVAL_ID
# Prepare for visualization.
tf.gfile.MakeDirs(FLAGS.vis_logdir)
save_dir = os.path.join(FLAGS.vis_logdir, _SEMANTIC_PREDICTION_SAVE_FOLDER)
tf.gfile.MakeDirs(save_dir)
raw_save_dir = os.path.join(
FLAGS.vis_logdir, _RAW_SEMANTIC_PREDICTION_SAVE_FOLDER)
tf.gfile.MakeDirs(raw_save_dir)
tf.logging.info('Visualizing on %s set', FLAGS.vis_split)
with tf.Graph().as_default():
samples = dataset.get_one_shot_iterator().get_next()
model_options = common.ModelOptions(
outputs_to_num_classes={common.OUTPUT_TYPE: dataset.num_of_classes},
crop_size=[int(sz) for sz in FLAGS.vis_crop_size],
atrous_rates=FLAGS.atrous_rates,
output_stride=FLAGS.output_stride)
if tuple(FLAGS.eval_scales) == (1.0,):
tf.logging.info('Performing single-scale test.')
predictions = model.predict_labels(
samples[common.IMAGE],
model_options=model_options,
image_pyramid=FLAGS.image_pyramid)
else:
tf.logging.info('Performing multi-scale test.')
if FLAGS.quantize_delay_step >= 0:
raise ValueError(
'Quantize mode is not supported with multi-scale test.')
predictions = model.predict_labels_multi_scale(
samples[common.IMAGE],
model_options=model_options,
eval_scales=FLAGS.eval_scales,
add_flipped_images=FLAGS.add_flipped_images)
predictions = predictions[common.OUTPUT_TYPE]
if FLAGS.min_resize_value and FLAGS.max_resize_value:
# Only support batch_size = 1, since we assume the dimensions of original
# image after tf.squeeze is [height, width, 3].
assert FLAGS.vis_batch_size == 1
# Reverse the resizing and padding operations performed in preprocessing.
# First, we slice the valid regions (i.e., remove padded region) and then
# we resize the predictions back.
original_image = tf.squeeze(samples[common.ORIGINAL_IMAGE])
original_image_shape = tf.shape(original_image)
predictions = tf.slice(
predictions,
[0, 0, 0],
[1, original_image_shape[0], original_image_shape[1]])
resized_shape = tf.to_int32([tf.squeeze(samples[common.HEIGHT]),
tf.squeeze(samples[common.WIDTH])])
predictions = tf.squeeze(
tf.image.resize_images(tf.expand_dims(predictions, 3),
resized_shape,
method=tf.image.ResizeMethod.NEAREST_NEIGHBOR,
align_corners=True), 3)
tf.train.get_or_create_global_step()
if FLAGS.quantize_delay_step >= 0:
contrib_quantize.create_eval_graph()
num_iteration = 0
max_num_iteration = FLAGS.max_number_of_iterations
checkpoints_iterator = contrib_training.checkpoints_iterator(
FLAGS.checkpoint_dir, min_interval_secs=FLAGS.eval_interval_secs)
for checkpoint_path in checkpoints_iterator:
num_iteration += 1
tf.logging.info(
'Starting visualization at ' + time.strftime('%Y-%m-%d-%H:%M:%S',
time.gmtime()))
tf.logging.info('Visualizing with model %s', checkpoint_path)
scaffold = tf.train.Scaffold(init_op=tf.global_variables_initializer())
session_creator = tf.train.ChiefSessionCreator(
scaffold=scaffold,
master=FLAGS.master,
checkpoint_filename_with_path=checkpoint_path)
with tf.train.MonitoredSession(
session_creator=session_creator, hooks=None) as sess:
batch = 0
image_id_offset = 0
while not sess.should_stop():
tf.logging.info('Visualizing batch %d', batch + 1)
_process_batch(sess=sess,
original_images=samples[common.ORIGINAL_IMAGE],
semantic_predictions=predictions,
image_names=samples[common.IMAGE_NAME],
image_heights=samples[common.HEIGHT],
image_widths=samples[common.WIDTH],
image_id_offset=image_id_offset,
save_dir=save_dir,
raw_save_dir=raw_save_dir,
train_id_to_eval_id=train_id_to_eval_id)
image_id_offset += FLAGS.vis_batch_size
batch += 1
tf.logging.info(
'Finished visualization at ' + time.strftime('%Y-%m-%d-%H:%M:%S',
time.gmtime()))
if max_num_iteration > 0 and num_iteration >= max_num_iteration:
break
if __name__ == '__main__':
flags.mark_flag_as_required('checkpoint_dir')
flags.mark_flag_as_required('vis_logdir')
flags.mark_flag_as_required('dataset_dir')
tf.app.run()