-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdlfuncs.py
57 lines (50 loc) · 1.98 KB
/
dlfuncs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import numpy as np
import pandas as pd
import funcs
import mlfuncs
import utils
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from keras.layers import Dense
from keras.models import Sequential
from keras.utils import to_categorical
SEED = 42
# function to read and preprocess data for deep learning
def read_preprocess_data(df):
if isinstance(df, pd.DataFrame):
X = df.drop(['year', 'price'], axis=1)
y = df['price']
else:
raise utils.InvalidDataFrame(df)
return X, y
def split_data(X, y, test_size = 0.3, random_state = SEED):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = test_size, random_state = random_state)
return X_train, X_test, y_train, y_test
def test_output(dfx, dfy):
from sklearn.pipeline import make_pipeline
X_train, X_test, y_train, y_test = split_data(dfx, dfy, test_size = 0.3, random_state = 42)
cat_feats, num_feats = funcs.extract_cat_num(X_train)
preprocessor = funcs.preprocess_col_transformer(cat_feats, num_feats)
pipe = make_pipeline(preprocessor)
X_td = pipe.fit_transform(X_train)
X_tdt = pipe.transform(X_test)
return X_td, X_tdt, y_train, y_test, pipe
def reg_model(n_cols, optimizer, loss):
model = Sequential()
model.add(Dense(100, input_shape = (n_cols,), activation='relu'))
model.add(Dense(50, activation='relu'))
model.add(Dense(1))
model.summary()
model.compile(optimizer=optimizer, loss=loss)
return model
def train_model(df, optimizer, loss):
dfx = df.drop(['year', 'price'], axis = 1)
dfy = df['price']
X_train, X_test, y_train, y_test, pipe = test_output(dfx, dfy)
n_cols = X_train.shape[1]
model = reg_model(n_cols, optimizer, loss)
model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs = 100)
result = model.evaluate(X_test, y_test)
y_preds = model.predict(X_test)
return result, y_test, y_preds, model, pipe