The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2024
[paper]
- Ubuntu 18.04.5 LTS
- CUDA 11.3
- Python 3.6.12
- pytorch == 1.10.1
Data pre-processing: Follow the preprocessing steps in SAFAS.
Our implementaion of GAC-FAS is in optimizers/gacfas.py
Update configuration file and start training ICM2O by:
python train.py --config ./configs/ICM2O.yaml
Pre-trained weights are released.
Please consider following parameters while runing as it affects on final results (See our Suppl.)
- Random seed
- Leaning rate decay steps (40, 5)
- FC learning rate scale (1, 10)
- Logit scale (12, 16, 32)
- Weight decay (1e-4, 5e-4, 6e-4)
- ERM losses (BCE, CE: OMI2C)
- Color Jitter may help
- Balanced live vs. spoof data loader may help (only for OCI2M)
- Larger lr may help (1e-2: OMI2C)
Methods | ICM2O | OCM2I | OCI2M | OMI2C | ||||
---|---|---|---|---|---|---|---|---|
HTER | AUC | HTER | AUC | HTER | AUC | HTER | AUC | |
MMD-AAE | 40.98 | 63.08 | 31.58 | 75.18 | 27.08 | 83.19 | 44.59 | 58.29 |
MADDG | 27.98 | 80.02 | 22.19 | 84.99 | 17.69 | 88.06 | 24.50 | 84.51 |
RFM | 16.45 | 91.16 | 17.30 | 90.48 | 13.89 | 93.98 | 20.27 | 88.16 |
SSDG-M | 25.17 | 81.83 | 18.21 | 94.61 | 16.67 | 90.47 | 23.11 | 85.45 |
SSDG-R | 15.61 | 91.54 | 11.71 | 96.59 | 7.38 | 97.17 | 10.44 | 95.94 |
D2AM | 15.27 | 90.87 | 15.43 | 91.22 | 12.70 | 95.66 | 20.98 | 85.58 |
SDA | 23.10 | 84.30 | 15.60 | 90.10 | 15.40 | 91.80 | 24.50 | 84.40 |
DRDG | 15.63 | 91.75 | 15.56 | 91.79 | 12.43 | 95.81 | 19.05 | 88.79 |
ANRL | 15.67 | 91.90 | 16.03 | 91.04 | 10.83 | 96.75 | 17.85 | 89.26 |
SSAN | 13.72 | 93.63 | 8.88 | 96.79 | 6.67 | 98.75 | 10.00 | 96.67 |
AMEL | 11.31 | 93.96 | 18.60 | 88.79 | 10.23 | 96.62 | 11.88 | 94.39 |
EBDG | 15.66 | 92.02 | 18.69 | 92.28 | 9.56 | 97.17 | 18.34 | 90.01 |
PathNet | 11.82 | 95.07 | 13.40 | 95.67 | 7.10 | 98.46 | 11.33 | 94.58 |
IADG | 8.86 | 97.14 | 10.62 | 94.50 | 5.41 | 98.19 | 8.70 | 96.40 |
SA-FAS | 10.00 | 96.23 | 6.58 | 97.54 | 5.95 | 96.55 | 8.78 | 95.37 |
UDG-FAS | 10.97 | 95.36 | 5.86 | 98.62 | 5.95 | 98.47 | 9.82 | 96.76 |
GAC-FAS (ours) | 8.60 (0.28) | 97.16 (0.40) | 4.29 (0.83) | 98.87 (0.60) | 5.00 (0.00) | 97.56 (0.06) | 8.20 (0.43) | 95.16 (0.09) |
Star (⭐) if you find it useful, and consider to cite our work
@inproceedings{le2024grad,
title={Gradient Alignment for Cross-Domain Face Anti-Spoofing},
author={Le, Binh M and Woo, Simon S},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
year={2024}
}