-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_manager.py
39 lines (32 loc) · 1.28 KB
/
data_manager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
class ClutteredMNIST(object):
def __init__(self, dataset_path):
self.dataset_path = dataset_path
@staticmethod
def to_categorical(y, num_classes=None):
y = np.array(y, dtype='int').ravel()
if not num_classes:
num_classes = np.max(y) + 1
n = y.shape[0]
categorical = np.zeros((n, num_classes))
categorical[np.arange(n), y] = 1
return categorical
def load(self):
num_classes = 10
data = np.load(self.dataset_path)
x_train = data['x_train']
x_train = x_train.reshape((x_train.shape[0], 60, 60, 1))
y_train = np.argmax(data['y_train'], axis=-1)
y_train = self.to_categorical(y_train, num_classes)
train_data = (x_train, y_train)
x_val = data['x_valid']
x_val = x_val.reshape((x_val.shape[0], 60, 60, 1))
y_val = np.argmax(data['y_valid'], axis=-1)
y_val = self.to_categorical(y_val, num_classes)
val_data = (x_val, y_val)
x_test = data['x_test']
x_test = x_test.reshape((x_test.shape[0], 60, 60, 1))
y_test = np.argmax(data['y_test'], axis=-1)
y_test = self.to_categorical(y_test, num_classes)
test_data = (x_test, y_test)
return train_data, val_data, test_data