Skip to content

LeeXun/word2vector

Repository files navigation

word2vector NodeJS Interface

This is a Node.js interface for Google's word2vector.
Here is an example of how to load large model like GoogleNews-vectors-negative300.bin by this package.

Supports both binary model and raw text model.

Installation

Linux, Unix OS are supported. Node.js 12 is not supported currently due to some API changes in V8. Please use Node.js LTS version (10.16.0). I will try to fix this while I am available.

Install it via npm:

npm install word2vector --save

In Node.js, require the module as below:

var w2v = require( 'word2vector' );

API Document:


Overview

train load getVector getVectors getSimilarWords getNeighbors similarity substract add


w2v.train( trainFile, modelFile, options, callback )

Click here to see example TrainFile format.
Example:

var w2v = require("./lib");
var trainFile = "./data/train.data",
    modelFile = "./data/test.model.bin";
w2v.train(trainFile, modelFile, {
  	cbow: 1,           // use the continuous bag of words model //default
  	size: 10,          // sets the size (dimension) of word vectors // default 100
  	window: 8,         // sets maximal skip length between words // default 5
    binary: 1,         // save the resulting vectors in binary mode // default off
  	negative: 25,      // number of negative examples; common values are 3 - 10 (0 = not used) // default 5
  	hs: 0,             // 1 = use  Hierarchical Softmax // default 0
  	sample: 1e-4,      
  	threads: 20,
  	iter: 15,
  	minCount: 1,       // This will discard words that appear less than *minCount* times // default 5
    logOn: false       // sets whether any output should be printed to the console // default false
  });

w2v.load( modelFile,?readType = "")

Should load model before calling any calcuation functions.
Params Description Default Value
readType Model format, pass "utf-8" if using a raw text model. "bin"
var w2v = require("../lib");
var modelFile = "./test.model.bin";
w2v.load( modelFile );
// console.log(w2v.getSimilarWordsWords());

w2v.getVector(word="word")

Params Description Default Value
word String to be searched. "word"
'use strict';
var w2v = require("./lib");
var modelFile = "./data/test.model.bin";
w2v.load( modelFile );
console.log(w2v.getVector("孫悟空"));
console.log(w2v.getVector("李洵"));

Sample Output:

// Array Type Only
[ 0.104406,
  -0.160019,
  -0.604506,
  -0.622804,
  0.039482,
  -0.120058,
  0.073555,
  0.05646,
  0.099059,
  -0.419282 ]

null // Return null if this word is not in model.

w2v.getVectors(words=["word1", "word2"], ?options = {})

Params Description Default Value
words Array of strings to be searched. "word"
var w2v = require("./lib");  
var modelFile = "./data/test.model.bin";
w2v.load( modelFile );
console.log(w2v.getVectors(["孫悟空", "李洵"]));

Sample Output:

[ { word: '孫悟空',
    vector:
     [ 0.104406,
       -0.160019,
       -0.604506,
       -0.622804,
       0.039482,
       -0.120058,
       0.073555,
       0.05646,
       0.099059,
       -0.419282 ] },
  { word: '李洵', vector: null } ]
  // this will trigger a error log in console:
  //'李洵' is not found in the model.

w2v.getSimilarWords(word = "word", ?options = {})

Return 40ish words that is similar to "word".
Params Description Default Value
word Strings to be searched. "word"
options.N return topN results Array
var w2v = require("./lib");
var modelFile = "./data/test.model.bin";
w2v.load( modelFile );
console.log(w2v.getSimilarWords("唐三藏"));
console.log(w2v.getSimilarWords("李洵"));

Sample Output:

// Array Type
[ { word: '孫悟空', similarity: 0.974369 },
  { word: '吳承恩', similarity: 0.96686 },
  { word: '林黛玉', similarity: 0.966664 },
  { word: '北地', similarity: 0.96264 },
  { word: '賈寶玉', similarity: 0.962137 },
  { word: '楚霸王', similarity: 0.955795 },
  { word: '梁山泊', similarity: 0.932804 },
  { word: '濮陽', similarity: 0.927542 },
  { word: '黃天霸', similarity: 0.927459 },
  { word: '英雄豪傑', similarity: 0.921575 }]
// Return empty [] if this word is not in model.
'李洵' is not found in the model.
[]

getNeighbors(vector, ?options = {})

Params Description Default Value
vector Vector to be searched. "word"
options.N return topN results Array
var w2v = require("./lib");
var modelFile = "./data/test.model.bin";
w2v.load( modelFile );
var a = w2v.getNeighbors(w2v.getVector("唐三藏"), {N: 9});
// These are equal to use w2v.getSimilarWords("唐三藏");
console.log(a);

Sample Output1:

[ { word: '唐三藏', similarity: 0.9999993515200001 },
  { word: '孫悟空', similarity: 0.974368825898 },
  { word: '吳承恩', similarity: 0.966859435824 },
  { word: '林黛玉', similarity: 0.966663471323 },
  { word: '北地', similarity: 0.962639240211 },
  { word: '賈寶玉', similarity: 0.9621371820049999 },
  { word: '楚霸王', similarity: 0.9557946924850002 },
  { word: '梁山泊', similarity: 0.9328033548890001 },
  { word: '濮陽', similarity: 0.9275417727409999 } ]
{ '唐三藏': 0.9999993515200001,
  '孫悟空': 0.974368825898,
  '吳承恩': 0.966859435824,
  '林黛玉': 0.966663471323,
  '北地': 0.962639240211,
  '賈寶玉': 0.9621371820049999,
  '楚霸王': 0.9557946924850002,
  '梁山泊': 0.9328033548890001,
  '濮陽': 0.9275417727409999 }

w2v.similarity(word1 = "word1", word2 = "word2")

w2v.similarity(vector1 = [], word2 = "word2")

w2v.similarity(word1 = "word1", vector2 = [])

w2v.similarity(vector1 = [], vector2 = [])

Compute the [cosine similarity](https://en.wikipedia.org/wiki/Cosine_similarity) between the two vector.
Will auto search the vector of passed word in model. Return false if it's not found.
Params Description Default Value
word1 First Strings to be compared. No default value
word2 Second Strings to be compared. No default value
vector1 First Vector to be compared. No default value
vector2 Second Vector to be compared. No default value
'use strict';
var w2v = require("./lib");
var modelFile = "./data/test.model.bin";
w2v.load( modelFile );
var a = w2v.similarity("唐三藏", "孫悟空"); //  0.974368825898
console.log(a);
var b = w2v.similarity("唐三藏", "李洵"); //  0.974368825898
// same as var b = w2v.similarity("唐三藏", w2v.getVector("李洵"));
// same as var b = w2v.similarity(w2v.getVector("唐三藏"), "李洵");
// same as var b = w2v.similarity(w2v.getVector("唐三藏"), w2v.getVector("李洵"));
console.log(b);

Sample Output:

0.974368825898
// '李洵' is not found in the model. // error alert in console
false

w2v.substract(word1 = "word1", word2 = "word2")

w2v.substract(vector1 = [], word2 = "word2")

w2v.substract(word1 = "word1", vector2 = [])

w2v.substract(vector1 = [], vector2 = [])

Substract vector1 from vector2.
Will auto search the vector of passed word in model. Return false if it's not found.
Params Description Default Value
word1 Subtrahend No default value
word2 Minuend No default value

Example:

'use strict';
var w2v = require("./lib");
var modelFile = "./data/test.model.bin";
w2v.load( modelFile );
var a = w2v.substract("孫悟空", "孫悟空");
console.log(a);

Sample Output:

[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

w2v.add(word1 = "word1", word2 = "word2")

w2v.add(vector1 = [], word2 = "word2")

w2v.add(word1 = "word1", vector2 = [])

w2v.add(vector1 = [], vector2 = [])

Add vector1 to vector2.
Will auto search the vector of passed word in model. Return false if it's not found.
Params Description Default Value
word1 Summand No default value
word2 Addend No default value

Example:

'use strict';
var w2v = require("./lib");
var modelFile = "./data/test.model.bin";
w2v.load( modelFile );
var a = w2v.add("孫悟空", "孫悟空");
var b = w2v.getVector("孫悟空");
console.log(a);
console.log(b);

Sample Output:

[ 0.208812,
  -0.320038,
  -1.209012,
  -1.245608,
  0.078964,
  -0.240116,
  0.14711,
  0.11292,
  0.198118,
  -0.838564 ]
[ 0.104406,
  -0.160019,
  -0.604506,
  -0.622804,
  0.039482,
  -0.120058,
  0.073555,
  0.05646,
  0.099059,
  -0.419282 ]