-
Notifications
You must be signed in to change notification settings - Fork 110
/
tf-logistic_regression_stat.py
94 lines (76 loc) · 2.65 KB
/
tf-logistic_regression_stat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#!/usr/bin/env python3
import math
import os
import sys
import csv
import tensorflow as tf
import numpy as np
import pandas as pd
from util import read_dataset, savecsv
np.set_printoptions(suppress=True)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
np.random.seed(0)
EPOCHES = 20
BATCH_SIZE = 16
learning_rate = 0.0002
# real data
# ######################################## difference from rosettta
file_x = '../dsets/ALL/cls_train_x.csv'
file_y = '../dsets/ALL/cls_train_y.csv'
real_X, real_Y = pd.read_csv(file_x, header=None).to_numpy(
), pd.read_csv(file_y, header=None).to_numpy()
# ######################################## difference from rosettta
DIM_NUM = real_X.shape[1]
X = tf.placeholder(tf.float32, [None, DIM_NUM])
Y = tf.placeholder(tf.float32, [None, 1])
print(X)
print(Y)
# initialize W & b
W = tf.Variable(tf.zeros([DIM_NUM, 1]))
b = tf.Variable(tf.zeros([1]))
print(W)
print(b)
# predict
pred_Y = tf.sigmoid(tf.matmul(X, W) + b)
print(pred_Y)
# loss
logits = tf.matmul(X, W) + b
loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=Y, logits=logits)
loss = tf.reduce_mean(loss)
print(loss)
# optimizer
train = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
print(train)
init = tf.global_variables_initializer()
print(init)
# #############################################################
# save to csv for comparing, for debug
scriptname = os.path.basename(sys.argv[0]).split(".")[0]
csvprefix = "./log/" + scriptname
os.makedirs(csvprefix, exist_ok=True)
csvprefix = csvprefix + "/tf"
# #############################################################
with tf.Session() as sess:
sess.run(init)
xW, xb = sess.run([W, b])
print("init weight:{} \nbias:{}".format(xW, xb))
# train
BATCHES = math.ceil(len(real_X) / BATCH_SIZE)
for e in range(EPOCHES):
for i in range(BATCHES):
bX = real_X[(i * BATCH_SIZE): (i + 1) * BATCH_SIZE]
bY = real_Y[(i * BATCH_SIZE): (i + 1) * BATCH_SIZE]
sess.run(train, feed_dict={X: bX, Y: bY})
j = e * BATCHES + i
if j % 50 == 0 or (j == EPOCHES * BATCHES - 1 and j % 50 != 0):
xW, xb = sess.run([W, b])
print("I,E,B:{:0>4d},{:0>4d},{:0>4d} weight:{} \nbias:{}".format(
j, e, i, xW, xb))
savecsv("{}-{:0>4d}-{}.csv".format(csvprefix, j, "W"), xW)
savecsv("{}-{:0>4d}-{}.csv".format(csvprefix, j, "b"), xb)
# predict
Y_pred = sess.run(pred_Y, feed_dict={X: real_X, Y: real_Y})
print("Y_pred:", Y_pred)
savecsv("{}-pred-{}.csv".format(csvprefix, "Y"), Y_pred)
# save real y for evaluation
savecsv("{}-real-{}.csv".format(csvprefix, "Y"), real_Y)