-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathwidth_analytical.py
332 lines (267 loc) · 10.3 KB
/
width_analytical.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import scipy
import scipy.integrate
import scipy.optimize
import math
import numpy
import ROOT
#calculations are taken from https://arxiv.org/abs/1805.08567
#following constants are MG defaults
GF = 1.174560e-05
mW = 7.995123e+01
mZ = 9.118760e+01
sinW2 = 1-(mW/mZ)**2
hbar = 6.58211915e-25 # hbar in GeV s
c = 299792458000.0 # speed of light in mm/s
mL = {
'e':5.110000e-04, # Me
'mu':1.056600e-01, # MMU
'tau':1.777000e+00, # MTA
}
mQ = {
'd':5.040000e-03, # MD
'u':2.550000e-03, # MU
's':1.010000e-01, # MS
'c':1.270000e+00, # MC
'b':4.700000e+00, # MB
't':1.733000e+02, # MT
}
Vckm = {
'ud':0.97427,
'us':0.22534,
'ub':0.00351,
'cd':0.22520,
'cs':0.97344,
'cb':0.04120,
'tu':0.00867,
'ts':0.04040,
'tb':0.99915
}
def lambdaFct(a,b,c):
return a**2+b**2+c**2-2*(a*b+a*c+b*c)
def Iudl(xu,xd,xl):
a = (xd+xl)**2
b = (1-xu)**2
fct = lambda x: 12./x*(x-xl**2-xd**2)*(1+xu**2-x)*numpy.sqrt(lambdaFct(x,xl**2,xd**2)*lambdaFct(1,x,xu**2))
return scipy.integrate.quad(fct,a,b)[0]
def widthNUNU_NC_sameFlavor(massHNL,couplingHNL):
#NOTE: the paper suggests 2x cross section while MG agrees with 0.5x
#TODO: this could be different for majorana vs dirac (i.e. paper assumes majorana)
return 0.5*widthNUNU_NC_oppositeFlavor(massHNL,couplingHNL)
def widthNUNU_NC_oppositeFlavor(massHNL,couplingHNL):
return (1+0)*GF**2*massHNL**5/(768*math.pi**3)*couplingHNL**2
def widthQQ_CC(massHNL,couplingHNL,Vud,massL,massU,massD):
Nc = 3.0
Nw = Nc*Vud**2
xl = massL/massHNL
xu = massU/massHNL
xd = massD/massHNL
if xl>0.49:
return 0
if xu>0.49:
return 0
if xd>0.49:
return 0
return Nw*GF**2*massHNL**5/(192.0*math.pi**3)*couplingHNL**2*Iudl(xu,xd,xl)
def widthUU_NC(massHNL,couplingHNL,massU):
NZ = 3
C1 = 1/4.*(1-8/3.*sinW2+32/9.*sinW2**2)
C2 = 1/3.*sinW2*(4/3.*sinW2-1)
x = massU/massHNL
if x>0.49:
return 0 #kinematically forbidden
#Lx = math.log((1-3*x**2-(1-x**2)*math.sqrt(1-4*x**2))/(x**2*(1+math.sqrt(1-4*x**2))))
Lx = 0 #NOTE: there seems to be a mistake in the Lx equation;
#anyway this seems to be a small correction
result = C1*((1-14*x**2-2*x**4-12*x**6)*math.sqrt(1-4*x**2)+12*x**4*(x**4-1)*Lx)
result += 4*C2*(x**2*(2+10*x**2-12*x**4)*math.sqrt(1-4*x**2)+6*x**4*(1-2*x**2+2*x**4)*Lx)
result *= NZ*GF**2*massHNL**5/(192*math.pi**3)*couplingHNL**2
#TODO: this can be negative near thresholds?
if result<0:
return 0
return result
def widthDD_NC(massHNL,couplingHNL,massD):
NZ = 3
C1 = 1/4.*(1-4/3.*sinW2+8/9.*sinW2**2)
C2 = 1/6.*sinW2*(2/3.*sinW2-1)
x = massD/massHNL
if x>0.49:
return 0 #kinematically forbidden
#Lx = math.log((1-3*x**2-(1-x**2)*math.sqrt(1-4*x**2))/(x**2*(1+math.sqrt(1-4*x**2))))
Lx = 0 #NOTE: there seems to be a mistake in the Lx equation;
#anyway this seems to be a small correction
result = C1*((1-14*x**2-2*x**4-12*x**6)*math.sqrt(1-4*x**2)+12*x**4*(x**4-1)*Lx)
result += 4*C2*(x**2*(2+10*x**2-12*x**4)*math.sqrt(1-4*x**2)+6*x**4*(1-2*x**2+2*x**4)*Lx)
result *= NZ*GF**2*massHNL**5/(192*math.pi**3)*couplingHNL**2
#TODO: this can be negative near thresholds?
if result<0:
return 0
return result
#charged current; i.e. leptons need to be different
def widthLNU_CC_oppositeFlavor(massHNL,couplingHNL,massL1,massL2):
Nw = 1.0
if (abs(massL1-massL2)/massL1<1e-3):
print "WARNING - leptons need to be opposite flavor for CC decay"
xl = massL1/massHNL
xu = massL2/massHNL
if xl>0.49:
return 0
if xu>0.49:
return 0
xd = 0.0
return Nw*GF**2*massHNL**5/(192.0*math.pi**3)*couplingHNL**2*Iudl(xu,xd,xl)
#neutral+charged current for same flavour leptons;
#e.g. HNL->nu,e+,e- = HNL->e-,W+ with W->nu,e+ AND HNL->nu,Z with Z->e+,e-
def widthLNU_sameFlavor(massHNL,couplingHNL,massL):
NZ = 1
C1 = 0.25*(1+4*sinW2+8*sinW2**2)
C2 = 0.5*sinW2*(2*sinW2+1)
x = massL/massHNL
if x>0.49:
return 0 #kinematically forbidden
#Lx = math.log((1-3*x**2-(1-x**2)*math.sqrt(1-4*x**2))/(x**2*(1+math.sqrt(1-4*x**2))))
Lx = 0 #NOTE: there seems to be a mistake in the Lx equation;
#anyway this seems to be a small correction
result = C1*((1-14*x**2-2*x**4-12*x**6)*math.sqrt(1-4*x**2)+12*x**4*(x**4-1)*Lx)
result += 4*C2*(x**2*(2+10*x**2-12*x**4)*math.sqrt(1-4*x**2)+6*x**4*(1-2*x**2+2*x**4)*Lx)
result *= NZ*GF**2*massHNL**5/(192*math.pi**3)*couplingHNL**2
#TODO: this can be negative near thresholds?
if result<0:
return 0
return result
#neutral current where leptons have different flavor than neutrino
def widthLNU_NC_oppositeFlavor(massHNL,couplingHNL,massL):
NZ = 1
C1 = 0.25*(1-4*sinW2+8*sinW2**2)
C2 = 0.5*sinW2*(2*sinW2-1)
x = massL/massHNL
if x>0.49:
return 0 #kinematically forbidden
#Lx = math.log((1-3*x**2-(1-x**2)*math.sqrt(1-4*x**2))/(x**2*(1+math.sqrt(1-4*x**2))))
Lx = 0 #NOTE: there seems to be a mistake in the Lx equation;
#anyway this seems to be a small correction
result = C1*((1-14*x**2-2*x**4-12*x**6)*math.sqrt(1-4*x**2)+12*x**4*(x**4-1)*Lx)
result += 4*C2*(x**2*(2+10*x**2-12*x**4)*math.sqrt(1-4*x**2)+6*x**4*(1-2*x**2+2*x**4)*Lx)
result *= NZ*GF**2*massHNL**5/(192*math.pi**3)*couplingHNL**2
#TODO: this can be negative near thresholds?
if result<0:
return 0
return result
def ctauFromWidth(width):
return hbar*c/width
def widthFromCtau(ctau):
return hbar*c/ctau
totalWidth = 0.
def widthTotal(massHNL,couplings,verbose = False):
widthSum = 0.0
for leptonFlavor,coupling in couplings.iteritems():
if verbose:
print "Lepton flavor: ",leptonFlavor
if verbose:
print "\tL QQ (CC)"
for uq in ['u','c']:
for dq in ['d','s','b']:
w = widthQQ_CC(massHNL,coupling,Vckm[uq+dq],mL[leptonFlavor],mQ[uq],mQ[dq])
if verbose:
print '\t\t%-5s %-5s %-5s %.4e'%(leptonFlavor,uq,dq,w)
widthSum += w
if verbose:
print "\tNU UU (NC)"
for uq in ['u','c']:
w = widthUU_NC(massHNL,coupling,mQ[uq])
if verbose:
print '\t\t%-5s %-5s %-5s %.4e'%('nu'+leptonFlavor,uq,uq,w)
widthSum += w
if verbose:
print "\tNU DD (NC)"
for dq in ['d','s','b']:
w = widthDD_NC(massHNL,coupling,mQ[dq])
if verbose:
print '\t\t%-5s %-5s %-5s %.4e'%('nu'+leptonFlavor,dq,dq,w)
widthSum += w
if verbose:
print "\tL LNU (CC)"
for leptonFlavor2 in ['e','mu','tau']:
if leptonFlavor!=leptonFlavor2:
w = widthLNU_CC_oppositeFlavor(massHNL,coupling,mL[leptonFlavor],mL[leptonFlavor2])
if verbose:
print '\t\t%-5s %-5s %-5s %.4e'%(leptonFlavor,leptonFlavor2,'nu'+leptonFlavor2,w)
widthSum += w
if verbose:
print "\tL LNU (CC+NC)"
for leptonFlavor2 in ['e','mu','tau']:
if leptonFlavor==leptonFlavor2:
w = widthLNU_sameFlavor(massHNL,coupling,mL[leptonFlavor])
if verbose:
print '\t\t%-5s %-5s %-5s %.4e'%(leptonFlavor,leptonFlavor2,'nu'+leptonFlavor2,w)
widthSum += w
if verbose:
print '\tNU LL (NC)'
for leptonFlavor2 in ['e','mu','tau']:
#same falvor can be CC and NC and is handled in LNU
if leptonFlavor!=leptonFlavor2:
w = widthLNU_NC_oppositeFlavor(massHNL,coupling,mL[leptonFlavor2])
if verbose:
print '\t\t%-5s %-5s %-5s %.4e'%('nu'+leptonFlavor,leptonFlavor2,leptonFlavor2,w)
widthSum += w
if verbose:
print "\tNU NUNU (NC)"
for leptonFlavor2 in ['e','mu','tau']:
if leptonFlavor==leptonFlavor2:
w = widthNUNU_NC_sameFlavor(massHNL,coupling)
if verbose:
print '\t\t%-5s %-5s %-5s %.4e'%('nu'+leptonFlavor,'nu'+leptonFlavor2,'nu'+leptonFlavor2,w)
widthSum += w
else:
w = widthNUNU_NC_oppositeFlavor(massHNL,coupling)
if verbose:
print '\t\t%-5s %-5s %-5s %.4e'%('nu'+leptonFlavor,'nu'+leptonFlavor2,'nu'+leptonFlavor2,w)
widthSum += w
return widthSum
def findCouplings(massHNL,ctau,relCouplings):
logCouplingScale = scipy.optimize.bisect(
lambda x: ctau-ctauFromWidth(widthTotal(massHNL,{k: v*10.0**x for (k,v) in relCouplings.items()})),
-20,
10
)
return {k: v*10.0**logCouplingScale for (k,v) in relCouplings.items()}
#print "-"*60
'''
mHNL = 2.0
couplings = {
#'e':0.01,
'mu':0.1,
#'tau':0.03
}
'''
#print widthTotal(20.0,{'e':0.1,'mu':0.2,'tau':0.3},True))
#couplings = findCouplings(10.0,1.0,{'e':1.0,'mu':0.5})
#print couplings,ctauFromWidth(widthTotal(10.0,couplings))
'''
cv = ROOT.TCanvas("cv","",800,700)
axis = ROOT.TH2F("axis","",50,1,20,50,1e-10,1)
cv.SetLogy(1)
cv.SetLogx(1)
axis.Draw("AXIS")
rootObj = []
for ctau in [1e-1,1e0,1e1,1e2,1e3,1e4]:
for mHNL in [1.,1.5, 2.,3.,4.,6.,8.,10.,14.,20.]:
targetCtau = ctau
logCoupling = scipy.optimize.bisect(
lambda x: targetCtau-ctauFromWidth(widthTotal(mHNL,{'e':0.0*10.0**x,'mu':1.0*10.0**x,'tau':0.0*10.0**x})),
-10,
1
)
coupling = 10.0**logCoupling
#print "%4.1f, %.3e, %.4e"%(mHNL,coupling,widthTotal(mHNL,{'mu':coupling}))#,ctauFromWidth(widthTotal(mHNL,{'mu':coupling}))
print "%.3e"%coupling
if coupling**2>1 or coupling**2<1e-10:
continue
m = ROOT.TMarker(mHNL,coupling**2,20)
rootObj.append(m)
m.SetMarkerSize(1.0)
m.SetMarkerColor(ROOT.kBlack)
m.Draw("Same")
print "Total width: ",widthTotal(mHNL,{'mu':0.1})#,ctauFromWidth(totalWidth),"mm"
cv.Update()
cv.Print("param.pdf")
'''