-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_hyperparameter_search.py
263 lines (203 loc) · 8.99 KB
/
random_hyperparameter_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import os
import argparse
import random
import numpy as np
import tensorflow as tf
from collections import namedtuple
from pathlib import Path
from model.model_manager import ModelManager
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
WordEmbedding = namedtuple(
'WordEmbedding',
['name', 'train_file', 'validation_file', 'test_file',
'embedding_file', 'embedding_pickle', 'embed_size']
)
GloVe = WordEmbedding(
name='GloVe',
train_file='data/glove/aclImdb_formatted/train/train.tfrecord',
validation_file='data/glove/aclImdb_formatted/val/val.tfrecord',
test_file='data/glove/aclImdb_formatted/test/test.tfrecord',
embedding_file='data/glove/glove.6B.100d.txt',
embedding_pickle='data/glove/glove.pkl',
embed_size=100
)
FastText = WordEmbedding(
name='FastText',
train_file='data/fasttext/aclImdb_formatted/train/train.tfrecord',
validation_file='data/fasttext/aclImdb_formatted/val/val.tfrecord',
test_file='data/fasttext/aclImdb_formatted/test/test.tfrecord',
embedding_file='data/fasttext/wiki.en.vec',
embedding_pickle='data/fasttext/fasttext.pkl',
embed_size=300
)
Word2Vec = WordEmbedding(
name='Word2Vec',
train_file='data/word2vec/aclImdb_formatted/train/train.tfrecord',
validation_file='data/word2vec/aclImdb_formatted/val/val.tfrecord',
test_file='data/word2vec/aclImdb_formatted/test/test.tfrecord',
embedding_file='data/word2vec/GoogleNews-vectors-negative300.bin',
embedding_pickle='data/word2vec/word2vec.pkl',
embed_size=300
)
word_embeddings = {
0: GloVe,
1: FastText,
2: Word2Vec
}
BATCH_SIZES = [32, 64, 128]
NUM_EPOCHS = [4, 8, 10, 12, 14, 16]
class RandomParameterSearch:
def __init__(self, num_samples):
self.num_samples = num_samples
self.num_train = 22500
self.num_validation = 2500
self.num_test = 25000
self.use_validation = True
self.use_mc_dropout = False
self.tensorboard_dir = 'tensorboard_logs'
self.graphs_dir = 'graphs'
self.saved_model_folder = 'saved_models'
self.perform_shuffle = 1
self.num_classes = 2
self.clip_gradients = 0
self.max_norm = 5
self.bucket_width = 30
self.num_buckets = 30
self.use_test = 0
self.save_graph = 0
def get_embedding(self):
# Fix word embeddings to Glove due to performance reasons
return word_embeddings[0]
def get_batch_size(self):
return BATCH_SIZES[random.randint(0, len(BATCH_SIZES) - 1)]
def get_num_epochs(self):
return NUM_EPOCHS[random.randint(0, len(NUM_EPOCHS) - 1)]
def get_dropout(self):
return np.random.uniform(0.2, 1)
def get_learning_rate(self):
return 10 ** np.random.uniform(-4, -0.6)
def exponential_draw(self, min_value, max_value):
return np.exp(np.random.uniform(np.log(min_value), np.log(max_value)))
def geometric_draw(self, min_value, max_value):
return np.round(self.exponential_draw(min_value, max_value))
def get_num_units(self, min_value=128, max_value=1024):
return int(self.geometric_draw(min_value, max_value))
def get_weight_decay(self, min_value=3.1e-5, max_value=1e-3):
return self.exponential_draw(min_value, max_value)
def sample_parameters(self):
chosen_embedding = self.get_embedding()
self.embedding_name = chosen_embedding.name
self.train_file = chosen_embedding.train_file
self.validation_file = chosen_embedding.validation_file
self.test_file = chosen_embedding.test_file
self.embedding_file = chosen_embedding.embedding_file
self.embedding_pickle = chosen_embedding.embedding_pickle
self.embed_size = chosen_embedding.embed_size
self.learning_rate = self.get_learning_rate()
self.recurrent_output_dropout = self.get_dropout()
self.recurrent_state_dropout = self.get_dropout()
self.embedding_dropout = self.get_dropout()
self.batch_size = self.get_batch_size()
self.num_epochs = self.get_num_epochs()
self.num_units = self.get_num_units()
self.weight_decay = self.get_weight_decay()
self.model_name = 'Embedding:{0},lr:{1:.5f},out_drop:{2:.3f},var_drop:{3:.3f},emb_drop:{4:.3f},batch:{5},epoch:{6},units:{7},decay:{8:.10f}'.format( # noqa
self.embedding_name, self.learning_rate, self.recurrent_output_dropout,
self.recurrent_state_dropout, self.embedding_dropout, self.batch_size,
self.num_epochs, self.num_units, self.weight_decay
)
def save_parameters(self, best_model, best_accuracy, save_path):
save_path = Path(save_path)
parameters = best_model.split(',')
if not save_path.exists():
save_path.mkdir()
best_model_path = save_path / 'best_model_parameters.txt'
with open(best_model_path, 'w') as best_model_file:
best_model_file.write(best_model + '\n')
for parameter in parameters:
best_model_file.write(parameter + '\n')
best_model_file.write('accuracy: {}'.format(best_accuracy))
def find_best_parameters(self, save_path, save_graph=False, verbose=True):
best_accuracy = -1
best_model = None
model_manager = ModelManager(None, verbose=verbose)
for sample in range(self.num_samples):
self.sample_parameters()
if verbose:
print('Evaluating model:\n{}'.format(self.model_name))
try:
model_params = {
'train_file': self.train_file,
'validation_file': self.validation_file,
'test_file': self.test_file,
'saved_model_folder': self.saved_model_folder,
'num_train': self.num_train,
'num_validation': self.num_validation,
'num_test': self.num_test,
'use_validation': self.use_validation,
'use_mc_dropout': self.use_mc_dropout,
'graphs_dir': self.graphs_dir,
'model_name': self.model_name,
'tensorboard_dir': self.tensorboard_dir,
'embedding_file': self.embedding_file,
'embedding_pickle': self.embedding_pickle,
'learning_rate': self.learning_rate,
'batch_size': self.batch_size,
'num_epochs': self.num_epochs,
'perform_shuffle': self.perform_shuffle,
'embed_size': self.embed_size,
'num_units': self.num_units,
'num_classes': self.num_classes,
'recurrent_output_dropout': self.recurrent_output_dropout,
'recurrent_state_dropout': self.recurrent_state_dropout,
'embedding_dropout': self.embedding_dropout,
'clip_gradients': self.clip_gradients,
'max_norm': self.max_norm,
'weight_decay': self.weight_decay,
'bucket_width': self.bucket_width,
'num_buckets': self.num_buckets,
'use_test': self.use_test,
'save_graph': self.save_graph,
'should_save': False
}
model_manager.model_params = model_params
accuracy, _, _, _ = model_manager.run_model()
model_manager.reset_graph()
if accuracy > best_accuracy:
best_accuracy = accuracy
best_model = self.model_name
except tf.errors.InvalidArgumentError as e:
print('Error running model: {}'.format(str(e)))
model_manager.reset_graph()
continue
except tf.errors.ResourceExhaustedError as e:
print('Error running model: {}'.format(str(e)))
model_manager.reset_graph()
continue
if verbose:
print('Best model:\n{}'.format(best_model))
print('Accuracy on validation set: {}'.format(best_accuracy))
if verbose:
print('Saving best model parameters ...')
if best_model:
self.save_parameters(best_model, best_accuracy, save_path)
def create_argument_parser():
parser = argparse.ArgumentParser()
parser.add_argument('-ns',
'--num-samples',
type=int,
help='The number of sample to use')
parser.add_argument('-sf',
'--save-folder',
type=str,
help='The folder to save the Random Parameter Search results')
return parser
def main():
parser = create_argument_parser()
user_args = vars(parser.parse_args())
num_samples = user_args['num_samples']
save_folder = user_args['save_folder']
random_search = RandomParameterSearch(num_samples)
random_search.find_best_parameters(save_folder)
if __name__ == '__main__':
main()