-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclasses.py
270 lines (233 loc) · 9.61 KB
/
classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from tkinter import Tk, BOTH, Canvas
import time
import random
class Window:
def __init__(self, width, height):
self.width = width
self.height = height
self.__root = Tk()
self.__root.title('Maze Solver Project')
self.canvas = Canvas(self.__root, bg="white", height=self.height, width=self.width)
self.canvas.pack(fill=BOTH, expand=1)
self.running = False
self.__root.protocol("WM_DELETE_WINDOW", self.close)
def draw_line(self, line, fill_color="black"):
line.draw(self.canvas, fill_color)
def redraw(self):
self.__root.update_idletasks()
self.__root.update()
def wait_for_close(self):
self.running = True
while self.running == True:
self.redraw()
print("window closed...")
def close(self):
self.running = False
class Point:
def __init__(self, x_coord, y_coord):
self.x_coord = x_coord
self.y_coord = y_coord
class Line:
def __init__(self, startpoint, endpoint):
self.startpoint = startpoint
self.endpoint = endpoint
def draw(self, canvas, fill_color):
canvas.create_line(self.startpoint.x_coord, self.startpoint.y_coord, self.endpoint.x_coord, self.endpoint.y_coord, fill = fill_color, width = 2)
class Cell():
def __init__(self, win = None):
self.has_left_wall = True
self.has_right_wall = True
self.has_top_wall = True
self.has_bottom_wall = True
self._x1 = None
self._x2 = None
self._y1 = None
self._y2 = None
self._win = win
self._visited = False
def draw(self, x1, y1, x2, y2):
self._x1 = x1
self._x2 = x2
self._y1 = y1
self._y2 = y2
if self.has_left_wall:
line = Line(Point(x1, y1), Point(x1, y2))
self._win.draw_line(line)
if self.has_top_wall:
line = Line(Point(x1, y1), Point(x2, y1))
self._win.draw_line(line)
if self.has_right_wall:
line = Line(Point(x2, y1), Point(x2, y2))
self._win.draw_line(line)
if self.has_bottom_wall:
line = Line(Point(x1, y2), Point(x2, y2))
self._win.draw_line(line)
if not self.has_left_wall:
line = Line(Point(x1, y1), Point(x1, y2))
self._win.draw_line(line, fill_color = "white")
if not self.has_top_wall:
line = Line(Point(x1, y1), Point(x2, y1))
self._win.draw_line(line, fill_color = "white")
if not self.has_right_wall:
line = Line(Point(x2, y1), Point(x2, y2))
self._win.draw_line(line, fill_color = "white")
if not self.has_bottom_wall:
line = Line(Point(x1, y2), Point(x2, y2))
self._win.draw_line(line, fill_color = "white")
def draw_move(self, to_cell, undo=False):
color = "red"
if undo == True: color = "grey"
x_self_center = (self._x2 + self._x1)/2
y_self_center = (self._y2 + self._y1)/2
x_target_center = (to_cell._x2 + to_cell._x1)/2
y_target_center = (to_cell._y2 + to_cell._y1)/2
Line(Point(x_self_center, y_self_center),Point(x_target_center, y_target_center)).draw(self._win.canvas, color)
class Maze():
def __init__(
self,
x1,
y1,
num_rows,
num_cols,
cell_size_x,
cell_size_y,
win = None,
seed = None
):
self.x1 = x1
self.y1 = y1
self.num_rows = num_rows
self.num_cols = num_cols
self.cell_size_x = cell_size_x
self.cell_size_y = cell_size_y
self.win = win
self._cells = None
if seed != None:
random.seed(seed)
self._create_cells()
self._break_entrance_and_exit()
self._break_walls(0,0)
self._reset_cells_visited()
def _create_cells(self):
self._cells = []
for i in range(self.num_cols):
tmp = []
for j in range(self.num_rows):
tmp_cell = Cell(self.win)
tmp.append(tmp_cell)
self._cells.append(tmp)
for i in range(self.num_cols):
for j in range(self.num_rows):
self._draw_cell(i,j)
def _draw_cell(self, i, j):
if None == self.win: return
top_left_corner_cell_x = self.x1 + i * self.cell_size_x
top_left_corner_cell_y = self.y1 + j * self.cell_size_y
bottom_right_corner_cell_x = top_left_corner_cell_x + self.cell_size_x
bottom_right_corner_cell_y = top_left_corner_cell_y + self.cell_size_y
self._cells[i][j].draw(top_left_corner_cell_x,top_left_corner_cell_y, bottom_right_corner_cell_x, bottom_right_corner_cell_y)
self._animate()
def _break_entrance_and_exit(self):
self._cells[0][0].has_top_wall = False
self._draw_cell(0, 0)
self._cells[-1][-1].has_bottom_wall = False
self._draw_cell(self.num_cols -1, self.num_rows -1)
def _break_walls(self, i, j):
self._cells[i][j]._visited = True
while True:
cells_to_visit = []
#Grenzen des Labyrinths bewahren und prüfen, welche adjazenten Zellen noch nicht besucht waren.
if i > 0 and not self._cells[i - 1][j]._visited:
cells_to_visit.append((i-1, j))
if i < self.num_cols - 1 and not self._cells[i+1][j]._visited:
cells_to_visit.append((i+1, j))
if j > 0 and not self._cells[i][j-1]._visited:
cells_to_visit.append((i, j-1))
if j < self.num_rows - 1 and not self._cells[i][j+1]._visited:
cells_to_visit.append((i,j+1))
#Breakout, wenn keine Zellen mehr zu besuchen sind
if len(cells_to_visit) == 0:
self._draw_cell(i, j)
return
#Zufällige Richtung wählen
direction_to_go = random.randrange(len(cells_to_visit))
next_index = cells_to_visit[direction_to_go]
#Wände löschen
# rechts
if next_index[0] == i + 1:
self._cells[i][j].has_right_wall = False
self._cells[i + 1][j].has_left_wall = False
# links
if next_index[0] == i - 1:
self._cells[i][j].has_left_wall = False
self._cells[i - 1][j].has_right_wall = False
# unten
if next_index[1] == j + 1:
self._cells[i][j].has_bottom_wall = False
self._cells[i][j + 1].has_top_wall = False
# oben
if next_index[1] == j - 1:
self._cells[i][j].has_top_wall = False
self._cells[i][j - 1].has_bottom_wall = False
#Rekursion zum weitergehen
self._break_walls(next_index[0], next_index[1])
def _reset_cells_visited(self):
for i in range(self.num_cols):
for j in range(self.num_rows):
self._cells[i][j]._visited = False
def _solve_r(self, i, j):
self._animate()
self._cells[i][j]._visited = True
if self.num_cols -1 == i and self.num_rows - 1 == j:
print("Ende des Labyrinths erreicht!")
return True
#prüfen, ob nach links korrekter Weg weitergeht
if (i > 0
and not self._cells[i][j].has_left_wall
and not self._cells[i - 1][j]._visited):
#print(f"Attempting move left from ({i}, {j}) to ({i - 1}, {j})")
self._cells[i][j].draw_move(self._cells[i-1][j])
if self._solve_r(i-1, j):
return True
else:
#print(f"Backtracking from ({i - 1}, {j}) to ({i}, {j})")
self._cells[i][j].draw_move(self._cells[i-1][j], undo = True)
#prüfen, ob nach rechts korrekter Weg weitergeht
if (i < self.num_cols - 1
and not self._cells[i][j].has_right_wall
and not self._cells[i + 1][j]._visited):
#print(f"Attempting move right from ({i}, {j}) to ({i + 1}, {j})")
self._cells[i][j].draw_move(self._cells[i+1][j])
if self._solve_r(i+1, j):
return True
else:
#print(f"Backtracking from ({i + 1}, {j}) to ({i}, {j})")
self._cells[i][j].draw_move(self._cells[i+1][j], undo = True)
#prüfen, ob nach oben korrekter Weg weitergeht
if (j > 0
and not self._cells[i][j].has_top_wall
and not self._cells[i][j - 1]._visited):
#print(f"Attempting move up from ({i}, {j}) to ({i}, {j-1})")
self._cells[i][j].draw_move(self._cells[i][j-1])
if self._solve_r(i, j-1):
return True
else:
#print(f"Backtracking from ({i}, {j-1}) to ({i}, {j})")
self._cells[i][j].draw_move(self._cells[i][j-1], undo = True)
#prüfen, ob nach unten korrekter Weg weitergeht
if (j < self.num_rows - 1
and not self._cells[i][j].has_bottom_wall
and not self._cells[i][j + 1]._visited):
#print(f"Attempting move up from ({i}, {j}) to ({i}, {j+1})")
self._cells[i][j].draw_move(self._cells[i][j+1])
if self._solve_r(i, j+1):
return True
else:
#print(f"Backtracking from ({i}, {j+1}) to ({i}, {j})")
self._cells[i][j].draw_move(self._cells[i][j+1], undo = True)
return False
def solve(self):
return self._solve_r(0, 0)
def _animate(self):
self.win.redraw()
time.sleep(0.005)