Skip to content
/ madac Public
forked from lamda-bbo/madac

Official implementation of NeurIPS22 paper “Multi-agent Dynamic Algorithm Configuration”

License

Notifications You must be signed in to change notification settings

LAMDA-RL/madac

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-agent Dynamic Algorithm Configuration

Official implementation of NeurIPS 2022 paper Multi-agent Dynamic Algorithm Configuration.

madac-moead

Installation

conda create -n madac python=3.7.13
conda activate madac
pip install -r requirements.txt
pip install -e . # Local installation of madacbench Package

Train MA-DAC

Train MA-DAC with MaMo in different tasks.

# Train MA-DAC (3)
python algos/madac/main.py --config=vdn_ns --env-config=moea with env_args.key=M_2_46_3
# Train MA-DAC (5)
python algos/madac/main.py --config=vdn_ns --env-config=moea with env_args.key=M_2_46_5
# Train MA-DAC (7)
python algos/madac/main.py --config=vdn_ns --env-config=moea with env_args.key=M_2_46_7
# Train MA-DAC (M)
python algos/madac/main.py --config=vdn_ns --env-config=moea with env_args.key=M_2_46_357

Train MA-DAC with Sigmoid.

python algos/madac/main.py --config=vdn_ns_sigmoid --env-config=sigmoid_state

You can modify the relevant configuration file algos/madac/config/envs/moea.yaml and algos/madac/config/algs/vdn_ns.yaml

Test MA-DAC

The trained model is saved in directory results/madac/models/, you need to specify the model directory in the configuration file via parameter checkpoint_path. More details of the configuration file can be found in EPyMARL.

Test MA-DAC in a specific problem. (The problem set is DTLZ2_3 DTLZ4_3 WFG4_3 WFG5_3 WFG6_3 WFG7_3 WFG8_3 WFG9_3 DTLZ2_5 DTLZ4_5 WFG4_5 WFG5_5 WFG6_5 WFG7_5 WFG8_5 WFG9_5 DTLZ2_7 DTLZ4_7 WFG4_7 WFG5_7 WFG6_7 WFG7_7 WFG8_7 WFG9_7) For example,

python algos/madac/main.py --config=vdn_ns_test --env-config=moea_test with env_args.key=DTLZ2_3

Other Baselines

MOEA/D

python algos/moead/moead_baseline.py

DQN

Train DQN in different tasks. (The task set is M_2_46_3, M_2_46_5, M_2_46_7). For example,

python algos/dac/dqn.py --key M_2_46_3

The trained model can be found in the directory results/dqn/M_2_46_3

The command to test the corresponding model on all problems is

python algos/dac/test_dqn.py --key M_2_46_3

Poster

madac-poster-mla

License

All the source code that has been taken from the EPyMARL repository was licensed (and remains so) under the Apache License v2.0 (included in LICENSE file). Any new code is also licensed under the Apache License v2.0.

Citation

@inproceedings{madac,
    author = {Ke Xue, Jiacheng Xu, Lei Yuan, Miqing Li, Chao Qian, Zongzhang Zhang, Yang Yu},
    title = {Multi-agent Dynamic Algorithm Configuration},
    booktitle = {Advances in Neural Information Processing Systems 35 (NeurIPS'22)},
    year = {2022},
    address={New Orleans, LA}
}

About

Official implementation of NeurIPS22 paper “Multi-agent Dynamic Algorithm Configuration”

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%