-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapriltags3.py
578 lines (443 loc) · 22.2 KB
/
apriltags3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
#!/usr/bin/env python
'''
Python wrapper for C version of apriltags. This program creates two
classes that are used to detect apriltags and extract information from
them. Using this module, you can identify all apriltags visible in an
image, and get information about the location and orientation of the
tags.
Original author: Isaac Dulin, Spring 2016
Updates: Matt Zucker, Fall 2016
Apriltags 3 version: Aleksandar Petrov, Spring 2019
'''
from __future__ import division
from __future__ import print_function
import ctypes
import os
import numpy
######################################################################
# pylint: disable=R0903
class _ImageU8(ctypes.Structure):
'''Wraps image_u8 C struct.'''
_fields_ = [
('width', ctypes.c_int),
('height', ctypes.c_int),
('stride', ctypes.c_int),
('buf', ctypes.POINTER(ctypes.c_uint8))
]
class _Matd(ctypes.Structure):
'''Wraps matd C struct.'''
_fields_ = [
('nrows', ctypes.c_int),
('ncols', ctypes.c_int),
('data', ctypes.c_double*1),
]
class _ZArray(ctypes.Structure):
'''Wraps zarray C struct.'''
_fields_ = [
('el_sz', ctypes.c_size_t),
('size', ctypes.c_int),
('alloc', ctypes.c_int),
('data', ctypes.c_void_p)
]
class _ApriltagFamily(ctypes.Structure):
'''Wraps apriltag_family C struct.'''
_fields_ = [
('ncodes', ctypes.c_uint32),
('codes', ctypes.POINTER(ctypes.c_uint64)),
('width_at_border', ctypes.c_int),
('total_width', ctypes.c_int),
('reversed_border', ctypes.c_bool),
('nbits', ctypes.c_uint32),
('bit_x', ctypes.POINTER(ctypes.c_uint32)),
('bit_y', ctypes.POINTER(ctypes.c_uint32)),
('h', ctypes.c_int32),
('name', ctypes.c_char_p),
]
class _ApriltagDetection(ctypes.Structure):
'''Wraps apriltag_detection C struct.'''
_fields_ = [
('family', ctypes.POINTER(_ApriltagFamily)),
('id', ctypes.c_int),
('hamming', ctypes.c_int),
('decision_margin', ctypes.c_float),
('H', ctypes.POINTER(_Matd)),
('c', ctypes.c_double*2),
('p', (ctypes.c_double*2)*4)
]
class _ApriltagDetector(ctypes.Structure):
'''Wraps apriltag_detector C struct.'''
_fields_ = [
('nthreads', ctypes.c_int),
('quad_decimate', ctypes.c_float),
('quad_sigma', ctypes.c_float),
('refine_edges', ctypes.c_int),
('decode_sharpening', ctypes.c_double),
('debug', ctypes.c_int)
]
class _ApriltagDetectionInfo(ctypes.Structure):
'''Wraps apriltag_detection_info C struct.'''
_fields_ = [
('det', ctypes.POINTER(_ApriltagDetection)),
('tagsize', ctypes.c_double),
('fx', ctypes.c_double),
('fy', ctypes.c_double),
('cx', ctypes.c_double),
('cy', ctypes.c_double)
]
class _ApriltagPose(ctypes.Structure):
'''Wraps apriltag_pose C struct.'''
_fields_ = [
('R', ctypes.POINTER(_Matd)),
('t', ctypes.POINTER(_Matd))
]
######################################################################
def _ptr_to_array2d(datatype, ptr, rows, cols):
array_type = (datatype*cols)*rows
array_buf = array_type.from_address(ctypes.addressof(ptr))
return numpy.ctypeslib.as_array(array_buf, shape=(rows, cols))
def _image_u8_get_array(img_ptr):
return _ptr_to_array2d(ctypes.c_uint8,
img_ptr.contents.buf.contents,
img_ptr.contents.height,
img_ptr.contents.stride)
def _matd_get_array(mat_ptr):
return _ptr_to_array2d(ctypes.c_double,
mat_ptr.contents.data,
int(mat_ptr.contents.nrows),
int(mat_ptr.contents.ncols))
def zarray_get(za, idx, ptr):
# memcpy(p, &za->data[idx*za->el_sz], za->el_sz);
#
# p = ptr
# za->el_sz = za.contents.el_sz
# &za->data[idx*za->el_sz] = za.contents.data+idx*za.contents.el_sz
ctypes.memmove(ptr, za.contents.data+idx*za.contents.el_sz, za.contents.el_sz)
######################################################################
class Detection():
'''Combined pythonic wrapper for apriltag_detection and apriltag_pose'''
def __init__(self):
self.tag_family = None
self.tag_id = None
self.hamming = None
self.decision_margin = None
self.homography = None
self.center = None
self.corners = None
self.pose_R = None
self.pose_t = None
self.pose_err = None
def __str__(self):
return('Detection object:'+
'\ntag_family = ' + str(self.tag_family)+
'\ntag_id = ' + str(self.tag_id)+
'\nhamming = ' + str(self.hamming)+
'\ndecision_margin = ' + str(self.decision_margin)+
'\nhomography = ' + str(self.homography)+
'\ncenter = ' + str(self.center)+
'\ncorners = ' + str(self.corners)+
'\npose_R = ' + str(self.pose_R)+
'\npose_t = ' + str(self.pose_t)+
'\npose_err = ' + str(self.pose_err)+'\n')
def __repr__(self):
return self.__str__()
######################################################################
class Detector(object):
'''Pythonic wrapper for apriltag_detector.
families: Tag families, separated with a space, default: tag36h11
nthreads: Number of threads, default: 1
quad_decimate: Detection of quads can be done on a lower-resolution image, improving speed at a cost of pose accuracy and a slight decrease in detection rate. Decoding the binary payload is still done at full resolution, default: 2.0
quad_sigma: What Gaussian blur should be applied to the segmented image (used for quad detection?) Parameter is the standard deviation in pixels. Very noisy images benefit from non-zero values (e.g. 0.8), default: 0.0
refine_edges: When non-zero, the edges of the each quad are adjusted to "snap to" strong gradients nearby. This is useful when decimation is employed, as it can increase the quality of the initial quad estimate substantially. Generally recommended to be on (1). Very computationally inexpensive. Option is ignored if quad_decimate = 1, default: 1
decode_sharpening: How much sharpening should be done to decoded images? This can help decode small tags but may or may not help in odd lighting conditions or low light conditions, default = 0.25
searchpath: Where to look for the Apriltag 3 library, must be a list, default: ['apriltags']
debug: If 1, will save debug images. Runs very slow, default: 0
'''
def __init__(self,
families='tag36h11',
nthreads=1,
quad_decimate=2.0,
quad_sigma=0.0,
refine_edges=1,
decode_sharpening=0.25,
debug=0,
searchpath=['apriltags']):
# Parse the parameters
self.params = dict()
self.params['families'] = families.split()
self.params['nthreads'] = nthreads
self.params['quad_decimate'] = quad_decimate
self.params['quad_sigma'] = quad_sigma
self.params['refine_edges'] = refine_edges
self.params['decode_sharpening'] = decode_sharpening
self.params['debug'] = debug
# detect OS to get extension for DLL
uname0 = os.uname()[0]
if uname0 == 'Darwin':
extension = '.dylib'
else:
extension = '.so'
filename = 'libapriltag'+extension
self.libc = None
self.tag_detector = None
self.tag_detector_ptr = None
for path in searchpath:
relpath = os.path.join(path, filename)
if os.path.exists(relpath):
self.libc = ctypes.CDLL(relpath)
break
# if full path not found just try opening the raw filename;
# this should search whatever paths dlopen is supposed to
# search.
if self.libc is None:
self.libc = ctypes.CDLL(filename)
if self.libc is None:
raise RuntimeError('could not find DLL named ' + filename)
# create the c-_apriltag_detector object
self.libc.apriltag_detector_create.restype = ctypes.POINTER(_ApriltagDetector)
self.tag_detector_ptr = self.libc.apriltag_detector_create()
# create the family
self.libc.apriltag_detector_add_family_bits.restype = None
self.tag_families = dict()
if 'tag16h5' in self.params['families']:
self.libc.tag16h5_create.restype = ctypes.POINTER(_ApriltagFamily)
self.tag_families['tag16h5']=self.libc.tag16h5_create()
self.libc.apriltag_detector_add_family_bits(self.tag_detector_ptr, self.tag_families['tag16h5'], 2)
elif 'tag25h9' in self.params['families']:
self.libc.tag25h9_create.restype = ctypes.POINTER(_ApriltagFamily)
self.tag_families['tag25h9']=self.libc.tag25h9_create()
self.libc.apriltag_detector_add_family_bits(self.tag_detector_ptr, self.tag_families['tag25h9'], 2)
elif 'tag36h11' in self.params['families']:
self.libc.tag36h11_create.restype = ctypes.POINTER(_ApriltagFamily)
self.tag_families['tag36h11']=self.libc.tag36h11_create()
self.libc.apriltag_detector_add_family_bits(self.tag_detector_ptr, self.tag_families['tag36h11'], 2)
elif 'tagCircle21h7' in self.params['families']:
self.libc.tagCircle21h7_create.restype = ctypes.POINTER(_ApriltagFamily)
self.tag_families['tagCircle21h7']=self.libc.tagCircle21h7_create()
self.libc.apriltag_detector_add_family_bits(self.tag_detector_ptr, self.tag_families['tagCircle21h7'], 2)
elif 'tagCircle49h12' in self.params['families']:
self.libc.tagCircle49h12_create.restype = ctypes.POINTER(_ApriltagFamily)
self.tag_families['tagCircle49h12']=self.libc.tagCircle49h12_create()
self.libc.apriltag_detector_add_family_bits(self.tag_detector_ptr, self.tag_families['tagCircle49h12'], 2)
elif 'tagCustom48h12' in self.params['families']:
self.libc.tagCustom48h12_create.restype = ctypes.POINTER(_ApriltagFamily)
self.tag_families['tagCustom48h12']=self.libc.tagCustom48h12_create()
self.libc.apriltag_detector_add_family_bits(self.tag_detector_ptr, self.tag_families['tagCustom48h12'], 2)
elif 'tagStandard41h12' in self.params['families']:
self.libc.tagStandard41h12_create.restype = ctypes.POINTER(_ApriltagFamily)
self.tag_families['tagStandard41h12']=self.libc.tagStandard41h12_create()
self.libc.apriltag_detector_add_family_bits(self.tag_detector_ptr, self.tag_families['tagStandard41h12'], 2)
elif 'tagStandard52h13' in self.params['families']:
self.libc.tagStandard52h13_create.restype = ctypes.POINTER(_ApriltagFamily)
self.tag_families['tagStandard52h13']=self.libc.tagStandard52h13_create()
self.libc.apriltag_detector_add_family_bits(self.tag_detector_ptr, self.tag_families['tagStandard52h13'], 2)
else:
raise Exception('Unrecognized tag family name. Use e.g. \'tag36h11\'.\n')
# configure the parameters of the detector
self.tag_detector_ptr.contents.nthreads = int(self.params['nthreads'])
self.tag_detector_ptr.contents.quad_decimate = float(self.params['quad_decimate'])
self.tag_detector_ptr.contents.quad_sigma = float(self.params['quad_sigma'])
self.tag_detector_ptr.contents.refine_edges = int(self.params['refine_edges'])
self.tag_detector_ptr.contents.decode_sharpening = int(self.params['decode_sharpening'])
self.tag_detector_ptr.contents.debug = int(self.params['debug'])
def __del__(self):
if self.tag_detector_ptr is not None:
# destroy the tag families
for family, tf in self.tag_families.items():
if 'tag16h5' == family:
self.libc.tag16h5_destroy.restype = None
self.libc.tag16h5_destroy(tf)
elif 'tag25h9' == family:
self.libc.tag25h9_destroy.restype = None
self.libc.tag25h9_destroy(tf)
elif 'tag36h11' == family:
self.libc.tag36h11_destroy.restype = None
self.libc.tag36h11_destroy(tf)
elif 'tagCircle21h7' == family:
self.libc.tagCircle21h7_destroy.restype = None
self.libc.tagCircle21h7_destroy(tf)
elif 'tagCircle49h12' == family:
self.libc.tagCircle49h12_destroy.restype = None
self.libc.tagCircle49h12_destroy(tf)
elif 'tagCustom48h12' == family:
self.libc.tagCustom48h12_destroy.restype = None
self.libc.tagCustom48h12_destroy(tf)
elif 'tagStandard41h12' == family:
self.libc.tagStandard41h12_destroy.restype = None
self.libc.tagStandard41h12_destroy(tf)
elif 'tagStandard52h13' == family:
self.libc.tagStandard52h13_destroy.restype = None
self.libc.tagStandard52h13_destroy(tf)
# destroy the detector
self.libc.apriltag_detector_destroy.restype = None
self.libc.apriltag_detector_destroy(self.tag_detector_ptr)
def detect(self, img, estimate_tag_pose=False, camera_params=None, tag_size=None):
'''Run detectons on the provided image. The image must be a grayscale
image of type numpy.uint8.'''
assert len(img.shape) == 2
assert img.dtype == numpy.uint8
c_img = self._convert_image(img)
return_info = []
#detect apriltags in the image
self.libc.apriltag_detector_detect.restype = ctypes.POINTER(_ZArray)
detections = self.libc.apriltag_detector_detect(self.tag_detector_ptr, c_img)
apriltag = ctypes.POINTER(_ApriltagDetection)()
for i in range(0, detections.contents.size):
#extract the data for each apriltag that was identified
zarray_get(detections, i, ctypes.byref(apriltag))
tag = apriltag.contents
homography = _matd_get_array(tag.H).copy() # numpy.zeros((3,3)) # Don't ask questions, move on with your life
center = numpy.ctypeslib.as_array(tag.c, shape=(2,)).copy()
corners = numpy.ctypeslib.as_array(tag.p, shape=(4, 2)).copy()
detection = Detection()
detection.tag_family = ctypes.string_at(tag.family.contents.name)
detection.tag_id = tag.id
detection.hamming = tag.hamming
detection.decision_margin = tag.decision_margin
detection.homography = homography
detection.center = center
detection.corners = corners
if estimate_tag_pose:
if camera_params==None:
raise Exception('camera_params must be provided to detect if estimate_tag_pose is set to True')
if tag_size==None:
raise Exception('tag_size must be provided to detect if estimate_tag_pose is set to True')
camera_fx, camera_fy, camera_cx, camera_cy = [ c for c in camera_params ]
info = _ApriltagDetectionInfo(det=apriltag,
tagsize=tag_size,
fx=camera_fx,
fy=camera_fy,
cx=camera_cx,
cy=camera_cy)
pose = _ApriltagPose()
self.libc.estimate_tag_pose.restype = ctypes.c_double
err = self.libc.estimate_tag_pose(ctypes.byref(info), ctypes.byref(pose))
detection.pose_R = _matd_get_array(pose.R).copy()
detection.pose_t = _matd_get_array(pose.t).copy()
detection.pose_err = err
#Append this dict to the tag data array
return_info.append(detection)
self.libc.image_u8_destroy.restype = None
self.libc.image_u8_destroy(c_img)
self.libc.apriltag_detections_destroy.restype = None
self.libc.apriltag_detections_destroy(detections)
return return_info
def _convert_image(self, img):
height = img.shape[0]
width = img.shape[1]
self.libc.image_u8_create.restype = ctypes.POINTER(_ImageU8)
c_img = self.libc.image_u8_create(width, height)
tmp = _image_u8_get_array(c_img)
# copy the opencv image into the destination array, accounting for the
# difference between stride & width.
tmp[:, :width] = img
# tmp goes out of scope here but we don't care because
# the underlying data is still in c_img.
return c_img
if __name__ == '__main__':
test_images_path = 'test'
visualization = True
try:
import cv2
except:
raise Exception('You need cv2 in order to run the demo. However, you can still use the library without it.')
try:
from cv2 import imshow
except:
print("The function imshow was not implemented in this installation. Rebuild OpenCV from source to use it")
print("VIsualization will be disabled.")
visualization = False
try:
import yaml
except:
raise Exception('You need yaml in order to run the tests. However, you can still use the library without it.')
at_detector = Detector(searchpath=['apriltags/lib', 'apriltags/lib64'],
families='tag36h11',
nthreads=1,
quad_decimate=1.0,
quad_sigma=0.0,
refine_edges=1,
decode_sharpening=0.25,
debug=0)
with open(test_images_path + '/test_info.yaml', 'r') as stream:
parameters = yaml.load(stream)
#### TEST WITH THE SAMPLE IMAGE ####
print("\n\nTESTING WITH A SAMPLE IMAGE")
img = cv2.imread(test_images_path+'/'+parameters['sample_test']['file'], cv2.IMREAD_GRAYSCALE)
cameraMatrix = numpy.array(parameters['sample_test']['K']).reshape((3,3))
camera_params = ( cameraMatrix[0,0], cameraMatrix[1,1], cameraMatrix[0,2], cameraMatrix[1,2] )
if visualization:
cv2.imshow('Original image',img)
tags = at_detector.detect(img, True, camera_params, parameters['sample_test']['tag_size'])
print(tags)
color_img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
for tag in tags:
for idx in range(len(tag.corners)):
cv2.line(color_img, tuple(tag.corners[idx-1, :].astype(int)), tuple(tag.corners[idx, :].astype(int)), (0, 255, 0))
cv2.putText(color_img, str(tag.tag_id),
org=(tag.corners[0, 0].astype(int)+10,tag.corners[0, 1].astype(int)+10),
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.8,
color=(0, 0, 255))
if visualization:
cv2.imshow('Detected tags', color_img)
k = cv2.waitKey(0)
if k == 27: # wait for ESC key to exit
cv2.destroyAllWindows()
#### TEST WITH THE ROTATION IMAGES ####
import time
print("\n\nTESTING WITH ROTATION IMAGES")
time_num = 0
time_sum = 0
test_images_path = 'test'
image_names = parameters['rotation_test']['files']
for image_name in image_names:
print("Testing image ", image_name)
ab_path = test_images_path + '/' + image_name
if(not os.path.isfile(ab_path)):
continue
groundtruth = float(image_name.split('_')[-1].split('.')[0]) # name of test image should be set to its groundtruth
parameters['rotation_test']['rotz'] = groundtruth
cameraMatrix = numpy.array(parameters['rotation_test']['K']).reshape((3,3))
camera_params = ( cameraMatrix[0,0], cameraMatrix[1,1], cameraMatrix[0,2], cameraMatrix[1,2] )
img = cv2.imread(ab_path, cv2.IMREAD_GRAYSCALE)
start = time.time()
tags = at_detector.detect(img, True, camera_params, parameters['rotation_test']['tag_size'])
time_sum+=time.time()-start
time_num+=1
print(tags[0].pose_t, parameters['rotation_test']['posx'], parameters['rotation_test']['posy'], parameters['rotation_test']['posz'])
print(tags[0].pose_R, parameters['rotation_test']['rotx'], parameters['rotation_test']['roty'], parameters['rotation_test']['rotz'])
print("AVG time per detection: ", time_sum/time_num)
#### TEST WITH MULTIPLE TAGS IMAGES ####
print("\n\nTESTING WITH MULTIPLE TAGS IMAGES")
time_num = 0
time_sum = 0
image_names = parameters['multiple_tags_test']['files']
for image_name in image_names:
print("Testing image ", image_name)
ab_path = test_images_path + '/' + image_name
if(not os.path.isfile(ab_path)):
continue
cameraMatrix = numpy.array(parameters['multiple_tags_test']['K']).reshape((3,3))
camera_params = ( cameraMatrix[0,0], cameraMatrix[1,1], cameraMatrix[0,2], cameraMatrix[1,2] )
img = cv2.imread(ab_path, cv2.IMREAD_GRAYSCALE)
start = time.time()
tags = at_detector.detect(img, True, camera_params, parameters['multiple_tags_test']['tag_size'])
time_sum+=time.time()-start
time_num+=1
tag_ids = [tag.tag_id for tag in tags]
print(len(tags), " tags found: ", tag_ids)
color_img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
for tag in tags:
for idx in range(len(tag.corners)):
cv2.line(color_img, tuple(tag.corners[idx-1, :].astype(int)), tuple(tag.corners[idx, :].astype(int)), (0, 255, 0))
cv2.putText(color_img, str(tag.tag_id),
org=(tag.corners[0, 0].astype(int)+10,tag.corners[0, 1].astype(int)+10),
fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.8,
color=(0, 0, 255))
if visualization:
cv2.imshow('Detected tags for ' + image_name , color_img)
k = cv2.waitKey(0)
if k == 27: # wait for ESC key to exit
cv2.destroyAllWindows()
print("AVG time per detection: ", time_sum/time_num)