A comprehensive quantum simulation platform integrating consciousness studies with advanced quantum computing techniques. This framework implements sophisticated mathematical models for quantum-classical interfaces, topological quantum field theories, and cognitive architectures.
The fundamental mathematical structure utilizes a complex Hilbert space ℋ with inner product ⟨·|·⟩. Quantum states are represented as:
For mixed states, we employ density operators ρ satisfying:
The framework implements geometric quantum mechanics using:
- Quantum State Manifold (complex projective space ℂℙⁿ)
- Fubini-Study metric for measuring distances between states
- Geometric phase (Berry phase) for adiabatic evolution
Incorporates TQFT principles through:
- Functor Z: nCob → Vect
- Witten-Reshetikhin-Turaev invariants
- Quantum homology operations
-
Quantum System Simulation ⚡
- Advanced numerical methods for time evolution
- Sophisticated error correction schemes
- Quantum circuit optimization
-
Visualization Engine 🎨
- Neural network-based quantum state rendering
- GLSL shader effects for quantum phenomena
- Interactive probability clouds
- AI-generated interference patterns
- Real-time state evolution visualization
-
Cognitive Architecture Integration 🧠
- Quantum neural networks
- Consciousness modeling
- Information integration theory implementation
- Python 3.12+
- PyTorch 2.0+
- QuTiP 5.0+
- OpenGL 4.5+
- CUDA 12.0+ (optional, for GPU acceleration)
git clone https://github.com/Kuonirad/Quantum-Consciousness-Framework.git
cd Quantum-Consciousness-Framework
pip install -e .
from quantum_consciousness import QuantumSystem
# Initialize quantum system
system = QuantumSystem(num_qubits=4)
# Evolve quantum state
state = system.evolve(
initial_state=|0⟩,
hamiltonian=H,
time=t
)
from quantum_consciousness.visualization import QuantumVisualizer
# Create visualizer
viz = QuantumVisualizer()
# Render quantum state with AI enhancement
viz.render_state(state, use_neural_network=True)
Comprehensive documentation is available in the /docs
directory:
- Mathematical Foundations
- Implementation Details
- API Reference
- Tutorials and Examples
Please read CONTRIBUTING.md for contribution guidelines.
This project is licensed under the MIT License - see LICENSE.md
- Kevin John Kull (kevinkull.kk@gmail.com)
- Nielsen, M. A., & Chuang, I. L. (2010). Quantum computation and quantum information.
- Witten, E. (1989). Quantum field theory and the Jones polynomial.
- Penrose, R. (1994). Shadows of the Mind: A Search for the Missing Science of Consciousness.
- Amari, S. I. (2016). Information geometry and its applications.
- Baez, J. C., & Stay, M. (2011). Physics, topology, logic and computation.
- Russell, W. (1926). The Universal One.
- Sakurai, J. J., & Napolitano, J. (2017). Modern Quantum Mechanics.
- Connes, A. (1994). Noncommutative Geometry.
- Tononi, G. (2008). Consciousness as integrated information.
- Wheeler, J. A. (1990). Information, physics, quantum: The search for links.
- Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal quantum computer.
- von Neumann, J. (1955). Mathematical Foundations of Quantum Mechanics.
- Bohm, D. (1980). Wholeness and the Implicate Order.
- Hameroff, S., & Penrose, R. (2014). Consciousness in the universe: A review of the 'Orch OR' theory.
- Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of the classical.