forked from GoGoDuck912/Self-Correction-Human-Parsing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
391 lines (320 loc) · 15.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
"""
@Author : Peike Li
@Contact : peike.li@yahoo.com
@File : train.py
@Time : 8/4/19 3:36 PM
@Desc :
@License : This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
import os
import json
import timeit
import argparse
import cv2
import albumentations as A
import torch
import torch.optim as optim
import torchvision.transforms as transforms
import torch.backends.cudnn as cudnn
from torch.utils import data
import networks
from datasets.datasets import LIPDataSet
from datasets.target_generation import generate_edge_tensor
import utils.schp as schp
from utils.transforms import BGR2RGB_transform
from utils.criterion import CriterionAll
from utils.encoding import DataParallelModel, DataParallelCriterion
from utils.warmup_scheduler import SGDRScheduler
from utils.eval import Eval
from utils.predict import HumanParsing
import csv
import warnings
warnings.filterwarnings("ignore")
import wandb
os.environ["WANDB_API_KEY"] = 'e7ed558aefc5cddf29d04c3037a712507b253521'
def get_arguments():
"""Parse all the arguments provided from the CLI.
Returns:
A list of parsed arguments.
"""
parser = argparse.ArgumentParser(description="Self Correction for Human Parsing")
# Network Structure
parser.add_argument("--arch", type=str, default='resnet101')
# Data Preference
parser.add_argument("--data-dir", type=str, default='./data/LIP')
parser.add_argument("--batch-size", type=int, default=16)
parser.add_argument("--input-size", type=str, default='473, 473')
parser.add_argument("--num-classes", type=int, default=20)
parser.add_argument("--ignore-label", type=int, default=255)
parser.add_argument("--random-mirror", action="store_true")
parser.add_argument("--random-scale", action="store_true")
# Training Strategy
parser.add_argument("--learning-rate", type=float, default=7e-3)
parser.add_argument("--momentum", type=float, default=0.9)
parser.add_argument("--weight-decay", type=float, default=5e-4)
parser.add_argument("--gpu", type=str, default='0,1,2')
parser.add_argument("--start-epoch", type=int, default=0)
parser.add_argument("--epochs", type=int, default=150)
parser.add_argument("--eval-epochs", type=int, default=10)
parser.add_argument("--imagenet-pretrain", type=str,
default='./pretrain_model/resnet101-imagenet.pth') # https://download.pytorch.org/models/resnet101-5d3b4d8f.pth
parser.add_argument("--log-dir", type=str, default='./log')
parser.add_argument("--model-restore", type=str, default='./log/checkpoint_last.pth.tar')
parser.add_argument("--schp-start", type=int, default=100, help='schp start epoch')
parser.add_argument("--cycle-epochs", type=int, default=10, help='schp cyclical epoch')
parser.add_argument("--schp-restore", type=str, default='./log/schp_checkpoint.pth.tar')
parser.add_argument("--lambda-s", type=float, default=1, help='segmentation loss weight')
parser.add_argument("--lambda-e", type=float, default=1, help='edge loss weight')
parser.add_argument("--lambda-c", type=float, default=0.1, help='segmentation-edge consistency loss weight')
parser.add_argument("--project-name", type=str, default='HumanParsing', help='name of project log in wandb')
parser.add_argument("--num-worker", type=int, default=8, help='num-worker < or = < !cat /proc/cpuinfo | grep processor | wc -l >')
parser.add_argument("--is-first", action="store_true")
return parser.parse_args()
def log2wandb(lr, loss, project, epoch, data_dir, log_dir):
wandb.init(project=project, entity='khanghn')
wandb.log({"Lr: ": lr, "Loss: ": loss.data.cpu()})
root = os.path.join(data_dir, 'val_images')
path_image_val = [name for name in os.listdir(root)]
path = os.path.join(root, path_image_val[0])
class_labels = {0: 'Background', 1: 'Face', 2: 'Hair', 3: 'Left-leg', 4: 'Right-leg',
5: 'Left-arm', 6: 'Right-arm', 7: 'Torso-skin'}
def log(weight=os.path.join(log_dir, "model_parsing_best.pth.tar"), mode='Best', data_dir=None):
mIoU = eval(weight, data_dir)
for key, value in mIoU.items():
wandb.log({f"{key} [{mode}]": value})
# save to csv
mIoU.update({"Lr: ": lr, "Loss: ": loss.data.cpu(), "Epoch": epoch})
values = []
for _, value in mIoU.items():
values.append(value)
with open(os.path.join(log_dir, f"log_{mode}.csv"), "a") as outfile:
csvwriter = csv.writer(outfile)
csvwriter.writerow(values)
Human_parsing_predictor = HumanParsing(dataset='mhp', weight=weight)
log_image = cv2.imread(path)
log_mask = Human_parsing_predictor.run(log_image)
mask_img = wandb.Image(log_image[:, :, ::-1],
caption=f"Prediction {mode}",
masks={"predictions":
{"mask_data": log_mask,
"class_labels": class_labels}})
wandb.log({f'mask-{mode}': mask_img})
log(weight=os.path.join(log_dir, "model_parsing_best.pth.tar"), mode='Best', data_dir=data_dir)
log(weight=os.path.join(log_dir, "checkpoint_last.pth.tar"), mode='Last', data_dir=data_dir)
def eval(model_checkpoint='./log/model_parsing_best.pth.tar', data_dir=None):
eval_model = Eval(model_restore=model_checkpoint, data_dir=data_dir)
mIoU = eval_model.run()
return mIoU
def init_log_csv(log_dir):
keys = ['Background',
'Face',
'Hair',
'Left-leg',
'Right-leg',
'Left-arm',
'Right-arm',
'Torso-skin',
'Pixel accuracy',
'Mean accuracy',
'Mean IU',
'Lr',
'Loss',
'Epoch']
mode = ['Best', 'Last']
for i in mode:
with open(os.path.join(log_dir, f"log_{i}.csv"), "a") as outfile:
csvwriter = csv.writer(outfile)
csvwriter.writerow(keys)
def main():
args = get_arguments()
print(args)
start_epoch = 0
cycle_n = 0
mIU_max = 0
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
with open(os.path.join(args.log_dir, 'args.json'), 'w') as opt_file:
json.dump(vars(args), opt_file)
gpus = [int(i) for i in args.gpu.split(',')]
if not args.gpu == 'None':
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
input_size = list(map(int, args.input_size.split(',')))
cudnn.enabled = True
cudnn.benchmark = True
# Model Initialization
AugmentCE2P = networks.init_model(args.arch, num_classes=args.num_classes, pretrained=args.imagenet_pretrain)
model = DataParallelModel(AugmentCE2P)
model.cuda()
IMAGE_MEAN = AugmentCE2P.mean
IMAGE_STD = AugmentCE2P.std
INPUT_SPACE = AugmentCE2P.input_space
print('image mean: {}'.format(IMAGE_MEAN))
print('image std: {}'.format(IMAGE_STD))
print('input space:{}'.format(INPUT_SPACE))
restore_from = args.model_restore
if os.path.exists(restore_from):
checkpoint = torch.load(restore_from)
model.load_state_dict(checkpoint['state_dict'])
start_epoch = checkpoint['epoch']
print('Resume training from {}, start at epoch: {}'.format(restore_from, start_epoch))
SCHP_AugmentCE2P = networks.init_model(args.arch, num_classes=args.num_classes, pretrained=args.imagenet_pretrain)
schp_model = DataParallelModel(SCHP_AugmentCE2P)
schp_model.cuda()
if os.path.exists(args.schp_restore):
print('Resuming schp checkpoint from {}'.format(args.schp_restore))
schp_checkpoint = torch.load(args.schp_restore)
schp_model_state_dict = schp_checkpoint['state_dict']
cycle_n = schp_checkpoint['cycle_n']
schp_model.load_state_dict(schp_model_state_dict)
# Loss Function
criterion = CriterionAll(lambda_1=args.lambda_s, lambda_2=args.lambda_e, lambda_3=args.lambda_c,
num_classes=args.num_classes)
criterion = DataParallelCriterion(criterion)
criterion.cuda()
# Data Loader
if INPUT_SPACE == 'BGR':
print('BGR Transformation')
augment = A.Compose([
A.GaussNoise(p=0.3),
A.MedianBlur(p=0.3),
A.Blur(p=.3),
A.CLAHE(p=.2),
A.ChannelShuffle(p=.2),
A.HueSaturationValue(p=.2),
A.InvertImg(p=.1),
A.RGBShift(p=.2)
])
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=IMAGE_MEAN,
std=IMAGE_STD),
])
elif INPUT_SPACE == 'RGB':
print('RGB Transformation')
augment = A.Compose([
A.GaussNoise(p=0.3),
A.MedianBlur(p=0.3),
A.Blur(p=.3),
A.CLAHE(p=.2),
A.ChannelShuffle(p=.2),
A.HueSaturationValue(p=.2),
A.InvertImg(p=.1),
A.RGBShift(p=.2)
])
transform = transforms.Compose([
transforms.ToTensor(),
BGR2RGB_transform(),
transforms.Normalize(mean=IMAGE_MEAN,
std=IMAGE_STD),
])
# Dataloader
train_dataset = LIPDataSet(args.data_dir, 'train', crop_size=input_size, transform=transform, augment=augment)
train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size * len(gpus),
num_workers=args.num_worker, shuffle=True, pin_memory=True, drop_last=True)
print('Total training samples: {}'.format(len(train_dataset)))
# Optimizer Initialization
optimizer = optim.SGD(model.parameters(), lr=args.learning_rate, momentum=args.momentum,
weight_decay=args.weight_decay)
lr_scheduler = SGDRScheduler(optimizer, total_epoch=args.epochs,
eta_min=args.learning_rate / 100, warmup_epoch=10,
start_cyclical=args.schp_start, cyclical_base_lr=args.learning_rate / 2,
cyclical_epoch=args.cycle_epochs)
total_iters = args.epochs * len(train_loader)
start = timeit.default_timer()
if args.is_first:
init_log_csv(args.log_dir)
for epoch in range(start_epoch, args.epochs):
lr_scheduler.step(epoch=epoch)
lr = lr_scheduler.get_lr()[0]
model.train()
for i_iter, batch in enumerate(train_loader):
i_iter += len(train_loader) * epoch
images, labels, _ = batch
labels = labels.cuda(non_blocking=True)
edges = generate_edge_tensor(labels)
labels = labels.type(torch.cuda.LongTensor)
edges = edges.type(torch.cuda.LongTensor)
preds = model(images)
# Online Self Correction Cycle with Label Refinement
"""
cycle_n = (epoch - schp_start(100)) // 10
"""
if cycle_n >= 1:
with torch.no_grad():
soft_preds = schp_model(images)
soft_parsing = []
soft_edge = []
# ------ Author's code ------
# for soft_pred in soft_preds:
# soft_parsing.append(soft_pred[0][-1])
# soft_edge.append(soft_pred[1][-1]) # <- BUGS: IndexError: list index out of range
# soft_preds = torch.cat(soft_parsing, dim=0)
# soft_edges = torch.cat(soft_edge, dim=0)
# ------ Khang's code ------
"""
Output model: [[parsing result1, parsing result2],[edge result]]
Viết lại code để shape phù hợp với shape của def parsing_loss() cần
Size ảnh sau khi qua model sẽ còn 119 * 119, tuy nhiên các hàm xử lý phía sau sẽ
resize bằng F.interpolate về size ban đầu
"""
soft_edges = soft_preds[1][0] # (2, 2, 119, 119) # edge
for soft_pred in soft_preds[0]:
soft_parsing.append(torch.unsqueeze(soft_pred[-1], 0))
soft_preds = torch.cat(soft_parsing, dim=0) # (2, 8, 119, 119) # parsing
else:
soft_preds = None
soft_edges = None
loss = criterion(preds, [labels, edges, soft_preds, soft_edges], cycle_n)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if i_iter % 100 == 0:
print('iter = {} of {} completed, lr = {}, loss = {}'.format(i_iter, total_iters, lr,
loss.data.cpu().numpy()))
"""
Giả sử eval_epochs = 10, thì cứ sau 10 epoch sẽ lưu weight checkpoint 1 lần
"""
if (epoch + 1) % (args.eval_epochs) == 0:
states = {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'loss': loss,
'mIU_max': mIU_max
}
schp.save_schp_checkpoint(states, args.log_dir, filename='checkpoint_last.pth.tar')
# save best
result_metrics = eval(model_checkpoint=os.path.join(args.log_dir, 'checkpoint_last.pth.tar'), data_dir=args.data_dir)
mIU = result_metrics['Mean IU']
status = f'\n------Saved best weight. mIU_max = {mIU_max} at Epoch: {epoch + 1}------\n' if mIU > mIU_max else f'\n------Save failed------\n'
print(status)
if mIU > mIU_max:
mIU_max = mIU
best_save_path = os.path.join(args.log_dir, 'model_parsing_best.pth.tar')
if os.path.exists(best_save_path):
os.remove(best_save_path)
torch.save(states, best_save_path)
log2wandb(lr, loss, args.project_name, epoch + 1, args.data_dir, args.log_dir)
# Self Correction Cycle with Model Aggregation
"""
giả sử cho schp_start = 100, và cycle_epoch = 10 thì từ epoch 100 cứ sau 10 epoch sẽ bắt đầu lưu weight schp 1 lần
"""
if (epoch + 1) >= args.schp_start and (epoch + 1 - args.schp_start) % args.cycle_epochs == 0:
print('Self-correction cycle number {}'.format(cycle_n))
schp.moving_average(schp_model, model, 1.0 / (cycle_n + 1)) # <=== cập nhật param, cycle_n càng lớn thì param của model schp càng nhiều hơn model gốc
cycle_n += 1
schp.bn_re_estimate(train_loader, schp_model) # <=== Dùng weight vừa được cập nhật ở trên để training train_loader
schp.save_schp_checkpoint({
'state_dict': schp_model.state_dict(),
'cycle_n': cycle_n,
}, False, args.log_dir, filename='schp_{}_checkpoint.pth.tar'.format(cycle_n))
torch.cuda.empty_cache()
end = timeit.default_timer()
print('epoch = {} of {} completed using {} s'.format(epoch, args.epochs,
(end - start) / (epoch - start_epoch + 1)))
end = timeit.default_timer()
print('Training Finished in {} seconds'.format(end - start))
if __name__ == '__main__':
main()