-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmicronet_main.py
230 lines (194 loc) · 15.1 KB
/
micronet_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
import time
import argparse
import shutil
import math
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from Counting import count
from Utils import *
from Models import *
def parse_args():
parser = argparse.ArgumentParser(description='micronet train script')
parser.add_argument('--model', default='micronet', type=str, help='name of the model to train')
parser.add_argument('--dataset', default='CIFAR100', type=str, help='name of the dataset to train')
parser.add_argument('--num_classes', default=100, type=int, help='number of classes in dataset')
parser.add_argument('--lr', default=0.1, type=float, help='learning rate')
parser.add_argument('--which_gpu', default='cuda:1', type=str, help='which GPU to use')
parser.add_argument('--batch_size', default=128, type=int, help='batch size')
parser.add_argument('--mini_batch_size', default=128, type=int, help='mini batch size size')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--nesterov', default=True, type=bool, help='nesterov momentum')
parser.add_argument('--n_worker', default=4, type=int, help='number of data loader worker')
parser.add_argument('--lr_type', default='cos', type=str, help='lr scheduler (cos/step)')
parser.add_argument('--n_epoch', default=600, type=int, help='number of epochs to train')
parser.add_argument('--wd', default=1e-5, type=float, help='weight decay')
parser.add_argument('--seed', default=None, type=int, help='random seed to set')
parser.add_argument('--data_root', default=None, type=str, help='dataset path')
parser.add_argument('--input_regularize', default='cutmix', type=str, help='input regularization')
parser.add_argument('--label_regularize', default='crossentropy',type=str, help='label regularization')
parser.add_argument('--augmentation', default='FastAuto', type=str, help='data augmentation')
parser.add_argument('--model_ver', default='ver2', type=str, help = 'network version')
parser.add_argument('--load_name', default='micronet_v2', type=str, help='load file name')
parser.add_argument('--name', default='micronet_v2', type=str, help='save file name')
parser.add_argument('--progress_name', default='progress_v2', type=str, help='save progress file name')
parser.add_argument('--ortho', default=True, type=bool, help='Orthogonal regularization')
parser.add_argument('--ortho_lr', default=0.7, type=float, help='orthogonal lr')
parser.add_argument('--min_prune_rate', default=0., type=float, help='initial prune_rate')
parser.add_argument('--max_prune_rate', default=45., type=float, help='prune_rate')
parser.add_argument('--precision', default='FP32', type=str, help='Precision')
parser.add_argument('--batch_wd', default=True, type=bool, help='whether regularizing wd on batchnorm')
return parser.parse_args()
def get_model():
print('=> Building model..')
if args.dataset =='CIFAR100':
if args.model == 'micronet':
net = MicroNet(ver = args.model_ver, num_classes = args.num_classes, add_se = True, Activation = 'HSwish')
if args.lr_type == 'cos':
net.set_config(batch_size = args.batch_size, momentum = args.momentum, lr = args.lr, num_epochs =int(args.n_epoch//4), weight_decay = args.wd, device = args.which_gpu, nesterov = args.nesterov)
else:
net.set_config(batch_size = args.batch_size, momentum = args.momentum, lr = args.lr, num_epochs =int(args.n_epoch//4), weight_decay = args.wd, device = args.which_gpu, nesterov = args.nesterov)
elif args.model == 'micronet_prune':
net = MicroNet_Prune(ver = args.model_ver, device = args.which_gpu, num_classes = args.num_classes, add_se = True, Activation = 'HSwish')
if args.lr_type == 'cos':
net.set_config(batch_size = args.batch_size, momentum = args.momentum, lr = args.lr, num_epochs =int(args.n_epoch//4), weight_decay = args.wd, device = args.which_gpu)
else:
net.set_config(batch_size = args.batch_size, momentum = args.momentum, lr = args.lr, num_epochs =int(args.n_epoch//4), weight_decay = args.wd, device = args.which_gpu)
elif args.dataset == 'ImageNet':
if args.model == 'micronet':
net = MicroNet_imagenet(num_classes = args.num_classes, add_se = True, Activation = 'HSwish')
if args.lr_type == 'cos':
net.set_config(batch_size = args.batch_size, momentum = args.momentum, lr = args.lr, num_epochs =int(args.n_epoch), weight_decay = args.wd, device = args.which_gpu)
else:
net.set_config(batch_size = args.batch_size, momentum = args.momentum, lr = args.lr, num_epochs =int(args.n_epoch), weight_decay = args.wd, device = args.which_gpu)
else:
raise NotImplementedError
return net.to(net.device)
def save_checkpoints(state):
torch.save(state, './Checkpoint/' + args.name + '.t7')
print('save Checkpoint/' + args.name + '.t7')
def iterative_train(net, train_loader, test_loader, args):
if args.precision=='FP32':
#1
train_losses1, train_accuracy1, test_losses1, test_accuracy1, best_model_wts1 = train_32bit(net, dataloader=train_loader, test_loader=test_loader, args=args)
torch.save(best_model_wts1, './Checkpoint/' + args.progress_name + '.t7')
#2
train_loader, _, _ = transform_data_set(args.dataset, batch_size = args.batch_size, augmentation = args.augmentation)
train_losses2, train_accuracy2, test_losses2, test_accuracy2, best_model_wts2 = train_32bit(net, dataloader=train_loader, test_loader=test_loader, args=args)
torch.save(best_model_wts2, './Checkpoint/' + args.progress_name + '.t7')
#3
train_loader, _, _ = transform_data_set(args.dataset, batch_size = args.batch_size, augmentation = args.augmentation)
train_losses3, train_accuracy3, test_losses3, test_accuracy3, best_model_wts3 = train_32bit(net, dataloader=train_loader, test_loader=test_loader, args=args)
torch.save(best_model_wts3, './Checkpoint/' + args.progress_name + '.t7')
#4
train_loader, _, _ = transform_data_set(args.dataset, batch_size = args.batch_size, augmentation = args.augmentation)
train_losses4, train_accuracy4, test_losses4, test_accuracy4, best_model_wts4 = train_32bit(net, dataloader=train_loader, test_loader=test_loader, args=args)
else:
#1
train_losses1, train_accuracy1, test_losses1, test_accuracy1, best_model_wts1 = train_16bit(net, dataloader=train_loader, test_loader=test_loader, args=args)
torch.save(best_model_wts1, './Checkpoint/' + args.progress_name + '.t7')
#2
train_loader, _, _ = transform_data_set(args.dataset, batch_size = args.batch_size, augmentation = args.augmentation)
train_losses2, train_accuracy2, test_losses2, test_accuracy2, best_model_wts2 = train_16bit(net, dataloader=train_loader, test_loader=test_loader, args=args)
torch.save(best_model_wts2, './Checkpoint/' + args.progress_name + '.t7')
#3
train_loader, _, _ = transform_data_set(args.dataset, batch_size = args.batch_size, augmentation = args.augmentation)
train_losses3, train_accuracy3, test_losses3, test_accuracy3, best_model_wts3 = train_16bit(net, dataloader=train_loader, test_loader=test_loader, args=args)
torch.save(best_model_wts3, './Checkpoint/' + args.progress_name + '.t7')
#4
train_loader, _, _ = transform_data_set(args.dataset, batch_size = args.batch_size, augmentation = args.augmentation)
train_losses4, train_accuracy4, test_losses4, test_accuracy4, best_model_wts4 = train_16bit(net, dataloader=train_loader, test_loader=test_loader, args=args)
train_losses = train_losses1 + train_losses2 + train_losses3 + train_losses4
train_accuracy = train_accuracy1 + train_accuracy2 + train_accuracy3 + train_accuracy4
test_losses = test_losses1 + test_losses2 + test_losses3 + test_losses4
test_accuracy = test_accuracy1 + test_accuracy2 + test_accuracy3 + test_accuracy4
return train_losses, train_accuracy, test_losses, test_accuracy, best_model_wts1, best_model_wts2, best_model_wts3, best_model_wts4
def iterative_prune_train(net, train_loader, test_loader, checkpoint, args):
if args.precision=='FP32':
#1
train_losses1, train_accuracy1, test_losses1, test_accuracy1, best_model_wts1 = train_prune_32bit(net, dataloader=train_loader, test_loader=test_loader, best_model_wts_init = checkpoint, args=args, prune_rate = args.min_prune_rate * 3 / 4 + args.max_prune_rate / 4)
torch.save(best_model_wts1, './Checkpoint/' + args.progress_name + '.t7')
#2
train_loader, _, _ = transform_data_set(args.dataset, batch_size = args.batch_size, augmentation = args.augmentation)
train_losses2, train_accuracy2, test_losses2, test_accuracy2, best_model_wts2 = train_prune_32bit(net, dataloader=train_loader, test_loader=test_loader, best_model_wts_init = best_model_wts1, args=args, prune_rate = args.min_prune_rate * 2 / 4 + args.max_prune_rate * 2 / 4)
torch.save(best_model_wts2, './Checkpoint/' + args.progress_name + '.t7')
#3
train_loader, _, _ = transform_data_set(args.dataset, batch_size = args.batch_size, augmentation = args.augmentation)
train_losses3, train_accuracy3, test_losses3, test_accuracy3, best_model_wts3 = train_prune_32bit(net, dataloader=train_loader, test_loader=test_loader, best_model_wts_init = best_model_wts2, args=args, prune_rate = args.min_prune_rate / 4 + args.max_prune_rate * 3 / 4)
torch.save(best_model_wts3, './Checkpoint/' + args.progress_name + '.t7')
#4
train_loader, _, _ = transform_data_set(args.dataset, batch_size = args.batch_size, augmentation = args.augmentation)
train_losses4, train_accuracy4, test_losses4, test_accuracy4, best_model_wts4 = train_prune_32bit(net, dataloader=train_loader, test_loader=test_loader, best_model_wts_init = best_model_wts3, args=args, prune_rate = args.max_prune_rate)
else:
#1
train_losses1, train_accuracy1, test_losses1, test_accuracy1, best_model_wts1 = train_prune_32bit(net, dataloader=train_loader, test_loader=test_loader, best_model_wts_init = checkpoint, args=args, prune_rate = args.min_prune_rate * 3 / 4 + args.max_prune_rate / 4)
torch.save(best_model_wts1, './Checkpoint/' + args.progress_name + '.t7')
#2
train_loader, _, _ = transform_data_set(args.dataset, batch_size = args.batch_size, augmentation = args.augmentation)
train_losses2, train_accuracy2, test_losses2, test_accuracy2, best_model_wts2 = train_prune_16bit(net, dataloader=train_loader, test_loader=test_loader, best_model_wts_init = best_model_wts1, args=args, prune_rate = args.min_prune_rate * 2 / 4 + args.max_prune_rate * 2 / 4)
torch.save(best_model_wts2, './Checkpoint/' + args.progress_name + '.t7')
#3
train_loader, _, _ = transform_data_set(args.dataset, batch_size = args.batch_size, augmentation = args.augmentation)
train_losses3, train_accuracy3, test_losses3, test_accuracy3, best_model_wts3 = train_prune_16bit(net, dataloader=train_loader, test_loader=test_loader, best_model_wts_init = best_model_wts2,args=args, prune_rate = args.min_prune_rate / 4 + args.max_prune_rate * 3 / 4)
torch.save(best_model_wts3, './Checkpoint/' + args.progress_name + '.t7')
#4
train_loader, _, _ = transform_data_set(args.dataset, batch_size = args.batch_size, augmentation = args.augmentation)
train_losses4, train_accuracy4, test_losses4, test_accuracy4, best_model_wts4 = train_prune_16bit(net, dataloader=train_loader, test_loader=test_loader, best_model_wts_init = best_model_wts3,args=args, prune_rate = args.max_prune_rate)
train_losses = train_losses1 + train_losses2 + train_losses3 + train_losses4
train_accuracy = train_accuracy1 + train_accuracy2 + train_accuracy3 + train_accuracy4
test_losses = test_losses1 + test_losses2 + test_losses3 + test_losses4
test_accuracy = test_accuracy1 + test_accuracy2 + test_accuracy3 + test_accuracy4
return train_losses, train_accuracy, test_losses, test_accuracy, best_model_wts1, best_model_wts2, best_model_wts3, best_model_wts4
if __name__ == '__main__':
args = parse_args()
if args.seed is not None:
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
print('=> Preparing data..')
train_loader, test_loader, num_classes = transform_data_set(args.dataset, batch_size = args.batch_size, augmentation = args.augmentation)
net = get_model()
#convert to half precision
if args.precision == 'FP16':
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
best_model_wts_init = copy.deepcopy(net.state_dict())
if args.dataset =='CIFAR100':
if args.precision == 'FP16':
input = torch.randn(1, 3, 32, 32).type(torch.HalfTensor).to(net.device)
else:
input = torch.randn(1, 3, 32, 32).to(net.device)
addflops, multflops, params = count(net, inputs=(input, ))
if args.dataset =='ImageNet':
input = torch.randn(1, 3, 224, 224).type(torch.HalfTensor).to(net.device)
addflops, multflops, params = count(net, inputs=(input, ))
print('Add flops: {}, Mult flops: {}, params: {}'.format(addflops, multflops, params))
print('start ' + args.name + '.t7')
if args.dataset == 'CIFAR100':
if args.model == 'micronet':
train_losses, train_accuracy, test_losses, test_accuracy, best_model_wts1, best_model_wts2, best_model_wts3, best_model_wts4 = iterative_train(net, train_loader, test_loader, args)
elif args.model == 'micronet_prune':
checkpoint = torch.load('./Checkpoint/' + args.load_name + '.t7', map_location=args.which_gpu)
net.load_state_dict(checkpoint['net4'], strict = False)
train_losses, train_accuracy, test_losses, test_accuracy, best_model_wts1, best_model_wts2, best_model_wts3, best_model_wts4 = iterative_prune_train(net, train_loader, test_loader, checkpoint['net4'], args)
elif args.dataset == 'ImageNet':
train_losses, train_accuracy, test_losses, test_accuracy, best_model_wts = train_image_16bit(net, train_loader, test_loader, args, lr_type = args.lr_type, input_regularize = args.input_regularize, label_regularize = args.label_regularize, ortho = True, ortho_lr = args.ortho_lr)
state = {}
state['net_init'] = best_model_wts_init
if args.dataset == 'CIFAR100':
state['net1'] = best_model_wts1
state['net2'] = best_model_wts2
state['net3'] = best_model_wts3
state['net4'] = best_model_wts4
elif args.dataset == 'ImageNet':
state['net'] = best_model_wts
state['train_losses'] = train_losses
state['train_accuracy'] = train_accuracy
state['test_losses'] = test_losses
state['test_accuracy'] = test_accuracy
state['flops_params'] = (addflops, multflops, params)
save_checkpoints(state)