-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_from_memory.py
137 lines (129 loc) · 4.23 KB
/
train_from_memory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from actor_critic.OD_agent import OD_agent
from actor_critic.route_attention import Route_Attention
from actor_critic.replay_memory import AgentReplayMemory
import numpy as np
dir_name = 'datasample/4-4/hangzhou_4x4/collect/'
state_batch = np.load(file=dir_name + 'state.npy')
next_state_batch = np.load(file=dir_name + 'next_state.npy')
action_batch = np.load(file=dir_name + 'action.npy')
reward_batch = np.load(file=dir_name + 'reward.npy')
memory = AgentReplayMemory(2000, 3, state_dim=16)
memory.buffer['state'] = state_batch
memory.buffer['next_state'] = next_state_batch
memory.buffer['reward'] = reward_batch
memory.buffer['action'] = action_batch
memory.buffer['done'] = np.zeros((2000, 3, 1))
memory._size = len(state_batch)
import argparse
import gym
import torch.nn.functional as F
from world import World, Route
from torch.utils.tensorboard import SummaryWriter
import os
import json
parser = argparse.ArgumentParser(description="Base Actor-Critic Args")
parser.add_argument(
"--gamma",
type=float,
default=0,
metavar="G",
help="discount factor for reward (default: 0.99)",
)
parser.add_argument(
"--tau",
type=float,
default=0.125,
metavar="G",
help="target smoothing coefficient(τ) (default: 0.125)",
)
parser.add_argument(
"--alpha",
type=float,
default=0,
metavar="G",
help="Temperature parameter α determines the relative importance of the entropy\
term against the reward (default: 0.2)",
)
parser.add_argument(
"--lr",
type=float,
default=0.001,
metavar="G",
help="learning rate (default: 0.001)",
)
parser.add_argument(
"--batch_size", type=int, default=32, metavar="N", help="batch size (default: 4)"
)
parser.add_argument(
"--start_episodes", type=int, default=20, metavar="N", help="random sample before"
)
parser.add_argument(
"--update_after", type=int, default=24, metavar="N", help="update parameters"
)
parser.add_argument(
"--updates_per_step",
type=int,
default=10,
metavar="N",
help="model updates per simulator step (default: 1)",
)
parser.add_argument(
"--target_update_interval",
type=int,
default=1,
metavar="N",
help="Value target update per no. of updates per step (default: 20)",
)
parser.add_argument(
"--replay_size",
type=int,
default=2000,
metavar="N",
help="size of replay buffer (default: 2000)",
)
parser.add_argument(
"--steps", type=int, default=6, help="number of steps (default: 3600)"
)
parser.add_argument(
"--thread", type=int, default=8, help="number of threads (default: 8)"
)
parser.add_argument(
"--num_routes", type=int, default=3, help="number of route choices (default: 3)"
)
parser.add_argument(
"--action_interval",
type=int,
default=1800,
help="how often agent make decisions (default: 120)",
)
parser.add_argument(
"--episodes", type=int, default=200, help="training episodes (default: 1)"
)
parser.add_argument(
"--embed_dim", type=int, default=8, help="training episodes (default: 1)"
)
parser.add_argument(
"--att_dim", type=int, default=16, help="training episodes (default: 1)"
)
parser.add_argument("--config_file", type=str, help="path of config file")
parser.add_argument("--date", type=str, help="date of running")
args = parser.parse_args()
world = World(args.config_file, thread_num=args.thread, args=args)
action_space = gym.spaces.Box(np.array([-1]), np.array([1]))
route_attention = Route_Attention(world, args)
agent = OD_agent(route_attention, 32, args)
from torch.utils.tensorboard import SummaryWriter
import torch
import os
writer = SummaryWriter('tensorboard/train_from_memory/OD/bs={}'.format(args.batch_size))
dir_name = 'model/train_from_memory/OD//bs={}/'.format(args.batch_size)
if not os.path.isdir(dir_name):
os.makedirs(dir_name)
for i in range(1000):
critic_loss, policy_loss = agent.update_parameters(memory, args.batch_size)
writer.add_scalar('local_critic_loss', critic_loss, i)
writer.add_scalar('policy_loss', policy_loss, i)
print(i,'|critic_loss:', critic_loss, '|policy_loss:', policy_loss)
if i % 499 == 0 and i > 0:
torch.save(agent.policy.state_dict(), dir_name + 'policy{}.pth'.format(i+1))
torch.save(agent.critic.state_dict(), dir_name + 'critic{}.pth'.format(i+1))