-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathVGG19.py
126 lines (100 loc) · 4.68 KB
/
VGG19.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import torch
import torch.nn as nn
import torchvision.models as models
import torch.utils.model_zoo as model_zoo
import copy
import time
import numpy as np
from torch.autograd import Variable
class FeatureExtractor(nn.Sequential):
def __init__(self):
super(FeatureExtractor, self).__init__()
def add_layer(self, name, layer):
self.add_module(name, layer)
def forward(self, x):
feature_maps = []
for module in self._modules:
x = self._modules[module](x)
feature_maps.append(x)
return feature_maps
class VGG19:
def __init__(self):
pretrained_weights = "https://s3-us-west-2.amazonaws.com/jcjohns-models/vgg19-d01eb7cb.pth"
vgg19_model = models.vgg19(pretrained=False)
vgg19_model.load_state_dict(model_zoo.load_url(pretrained_weights), strict=False)
self.vgg19_features = vgg19_model.features
self.model = FeatureExtractor() # the new Feature extractor module network
conv_counter = 1
relu_counter = 1
block_counter = 1
# build feature extractor
for i, layer in enumerate(list(self.vgg19_features)):
if isinstance(layer, nn.Conv2d):
name = "conv_" + str(block_counter) + "_" + str(conv_counter) + "__" + str(i)
conv_counter += 1
self.model.add_layer(name, layer)
if isinstance(layer, nn.ReLU):
name = "relu_" + str(block_counter) + "_" + str(relu_counter) + "__" + str(i)
relu_counter += 1
self.model.add_layer(name, nn.ReLU(inplace=False))
if isinstance(layer, nn.MaxPool2d):
name = "pool_" + str(block_counter) + "__" + str(i)
relu_counter,conv_counter = 1,1
block_counter += 1
self.model.add_layer(name, nn.MaxPool2d((2, 2), ceil_mode=True))
self.model.cuda()
self._mean = (103.939, 116.779, 123.68)
def forward_subnet(self, input_var, start_index, end_index):
for i, layer in enumerate(list(self.model)):
if i >= start_index and i <= end_index:
input_var = layer(input_var)
return input_var
def get_features(self, img_tensor, layers):
img_tensor = img_tensor.cuda()
for channel in range(3):
img_tensor[:, channel, :, :] -= self._mean[channel]
img_var = Variable(img_tensor)
feature_maps = self.model(img_var)
features = [] # feature maps actually used
for i, f in enumerate(feature_maps):
if i in layers:
features.append(f.data)
features.reverse()
features.append(img_var.data) # Now the feature maps are [F5,F4,F3,F2,F1,INPUT]
sizes = [f.size() for f in features]
return features, sizes
def get_deconvoluted_feat(self, feat, curr_layer, init=None, lr=10,blob_layers=[29,20,11,6,1]):
blob_layers = blob_layers+[-1]
end_layer = blob_layers[curr_layer]
mid_layer = blob_layers[curr_layer + 1]
start_layer = blob_layers[curr_layer + 2] + 1
t_begin = time.time()
print("="*20+"Deconvolution Start"+"="*20)
print("Start:{},Mid:{},End:{}".format(start_layer,mid_layer,end_layer))
layers = []
for i, layer in enumerate(list(self.model)):
if i >= start_layer and i <= end_layer:
l = copy.deepcopy(layer)
for p in l.parameters():
p.data = p.data.type(torch.DoubleTensor).cuda()
layers.append(l)
net = nn.Sequential(*layers).cuda()
noise = init.type(torch.cuda.DoubleTensor).clone()
target = Variable(feat.type(torch.cuda.DoubleTensor),requires_grad=False)
noise_size = noise.size()
noise = Variable(noise.cuda(), requires_grad=True)
optimizer = torch.optim.LBFGS([noise], lr=lr,max_iter=20,history_size=4,tolerance_grad=1e-4)
def closure():
optimizer.zero_grad()
output = net(noise)
loss = torch.mean((target - output)**2)
loss.backward()
return loss
for i in range(25):
loss = optimizer.step(closure)
print("LBFGS iter:{} Loss:{}".format((i+1)*20,loss.data[0]))
noise = noise.type(torch.cuda.FloatTensor)
out = self.forward_subnet(input_var=noise, start_index=start_layer, end_index=mid_layer)
elapse_time = time.time() - t_begin
print("Deconvolution Finished, Elapsed: {:.2f}s".format(elapse_time))
return out.data