forked from icsm-au/datum-modernisation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcreateBLs.py
executable file
·267 lines (250 loc) · 11.1 KB
/
createBLs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#!/usr/bin/env python3
"""
NAME:
createBLs.py
PURPOSE:
Form baselines from the stations in a SINEX file and create DynaML
formatted files
EXPLANATION:
The code takes one or more SINEX files as input and returns, for each one,
both a DynaML formatted station and measurement file for input into
DynAdjust
USAGE:
createBLs.py infile [infile...]
INPUT:
One or more SINEX files. Wildcards may be used
OUTPUT:
One DynaML formatted station file and one DynaML formatted measurement file
per input SINEX file. These files will have _stn.xml and _msr.xml appended
to the root of the infile
HISTORY:
0.01 2013-05-30 Craig Harrison
- Written
0.02 2013-06-21 Craig Harrison
- Updated usage example
0.03 2013-07-05 Craig Harrison
- Fixed several bugs
0.04 2013-09-10 Craig Harrison
- Equation for creating baselines corrected
- i.e., \Delta x_{12} = x_2 - x_1 NOT x_1 - x_2
1.00 2015-01-16 Craig Harrison
- Major re-write
- Code renamed from sinex2dynaXML.py to createBLs.py
- Removed core station
- optparse (which is deprecated from 2.7) replaced with argparse
- Removed bug in output file naming
1.01 2015-05-06 Craig Harrison
- Output baselines changed from measurement type G (single
baseline) to type X (baseline cluster). This utilises the full
VCV information
- Default scale factor has been changed to 1
1.02 2015-08-28 Craig Harrison
- Changed scaling to modify vscale rather than the actual
uncertainties
1.03 2016-01-29 Craig Harrison
- Added <Source> and <ReferenceFrame> tags to the measurement file
1.04 2016-04-11 Craig Harrison
- Added the ability to specify v-scale using the results out from
getSigma0.old.pl
2.00 2016-07-31 Craig Harrison
- Re-write due to move from NCI to GA, e.g., argparse was removed
- Re-write to account for the new APREF solution, which requires
that the SINEX files be converted to DynaML files before
running getSigma0.pl
- Incorporated renaming of APREF stations with discontinuities
2.01 2016-11-23 Craig Harrison
- Fixed bug where the a priori coordinates for APREF stations with
discontinuities were being taken from the GDA2020 APREF
solution
3.00 2020-08-26 Craig Harrison
- Refactor for Python 3
- Generalised for inclusion in datum-modernisation repo
"""
import argparse
import os
import datetime
import re
import numpy as np
# Set up argparse
refFrames = ['GDA94', 'GDA2020', 'ITRF2014', 'ITRF2008', 'ITRF2005',
'ITRF2000', 'ITRF97', 'ITRF96', 'ITRF94', 'ITRF93', 'ITRF92',
'ITRF91', 'ITRF90', 'ITRF89', 'ITRF88', 'WGS84']
parser = argparse.ArgumentParser(
description='Convert a SINEX file into a DynaML GNSS baseline cluster',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-r', metavar='reference frame', dest='refFrame', type=str,
default='ITRF2014', choices=refFrames,
help='The reference frame of the SINEX file')
parser.add_argument('files', nargs='+',
help='The SINEX file to be converted')
parser.add_argument('--version', action='version', version='%(prog)s 3.00')
args = parser.parse_args()
# Loop over the input files
for inputFile in args.files:
# Get root name of the SINEX file and open the output files
rootName = os.path.basename(inputFile)
rootName = rootName.split('.')[0]
stn = open(rootName + '_stn.xml', 'w')
msr = open(rootName + '_msr.xml', 'w')
# Open the SINEX file and read in all lines
snxFile = open(inputFile)
lines = snxFile.readlines()
# Create lists to hold the site ID, station coordinate estimate, and the
# VCV matrix lines
estimateLines = []
matrixLines = []
goE = 0
goM = 0
for line in lines:
if re.match('\+SOLUTION/ESTIMATE', line):
goE = 1
if re.match('\+SOLUTION/MATRIX_ESTIMATE', line):
goM = 1
if goE and not re.match('[+*-]', line):
estimateLines.append(line)
if goM and not re.match('[+*-]', line):
matrixLines.append(line)
if re.match('-SOLUTION/ESTIMATE', line):
goE = 0
if re.match('-SOLUTION/MATRIX_ESTIMATE', line):
goM = 0
# Get the yearDoy and epoch
year = int(estimateLines[0][27:29])
if year < 94:
year += 2000
else:
year += 1900
doy = int(estimateLines[0][30:33])
date = datetime.date(year, 1, 1)
date = date + datetime.timedelta(days=doy)
epoch = date.strftime('%d.%m.%Y')
# Write headers
stn.write('<?xml version="1.0"?>\n')
stn.write('<DnaXmlFormat type="Station File" referenceframe="' +
args.refFrame + '" epoch="' + epoch +
'" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ' +
'xsi:noNamespaceSchemaLocation="DynaML.xsd">\n')
msr.write('<?xml version="1.0"?>\n')
msr.write('<DnaXmlFormat type="Measurement File" referenceframe="' +
args.refFrame + '" epoch="' + epoch +
'" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ' +
'xsi:noNamespaceSchemaLocation="DynaML.xsd">\n')
# Create a list of dictionaries to hold the station names and their
# coordinates
stats = []
data = []
estimateLines.reverse()
while estimateLines:
col = estimateLines.pop().rstrip().split()
source = {}
stats.append(col[2].upper())
source['site'] = col[2].upper()
source['x'] = float(col[8])
col = estimateLines.pop().rstrip().split()
source['y'] = float(col[8])
col = estimateLines.pop().rstrip().split()
source['z'] = float(col[8])
data.append(source)
# Create the variance-covariance matrix. In the SINEX file it is given as
# a lower triangular matrix
vcvL = np.array(np.zeros((3 * len(data), 3 * len(data))))
for line in matrixLines:
col = line.rstrip().split()
for i in range(2, len(col)):
vcvL[int(col[0]) - 1, int(col[1]) + i - 3] = float(col[i])
vcvU = np.copy(vcvL.transpose())
for i in range(3 * len(data)):
vcvU[i, i] = 0
vcv = vcvL + vcvU
# Create the design matrix
desMatrix = np.array(np.zeros((3 * (len(data) - 1), 3 * len(data))))
for i in range(len(data) - 1):
desMatrix[3 * i, 0] = -1
desMatrix[3 * i + 1, 1] = -1
desMatrix[3 * i + 2, 2] = -1
desMatrix[3 * i, 3 * (i + 1)] = 1
desMatrix[3 * i + 1, 3 * (i + 1) + 1] = 1
desMatrix[3 * i + 2, 3 * (i + 1) + 2] = 1
# Create the matrix of observed antenna positions
coords = np.array(np.zeros((3 * len(data), 1)))
for i in range(len(data)):
coords[3 * i, 0] = data[i]['x']
coords[3 * i + 1, 0] = data[i]['y']
coords[3 * i + 2, 0] = data[i]['z']
# Calculate the deltas and the corresponding VCV matrix
deltas = desMatrix @ coords
delVCV = desMatrix @ vcv @ desMatrix.transpose()
# Loop over the sites and write the station data to the output XML file
for i in range(len(data)):
stn.write('\t<DnaStation>\n')
stn.write('\t\t<Name>%s</Name>\n' % (data[i]['site']))
stn.write('\t\t<Constraints>FFF</Constraints>\n')
stn.write('\t\t<Type>XYZ</Type>\n')
stn.write('\t\t<StationCoord>\n')
stn.write('\t\t\t<Name>%s</Name>\n' % (data[i]['site']))
stn.write('\t\t\t<XAxis>%20.14e</XAxis>\n' % (data[i]['x']))
stn.write('\t\t\t<YAxis>%20.14e</YAxis>\n' % (data[i]['y']))
stn.write('\t\t\t<Height>%20.14e</Height>\n' % (data[i]['z']))
stn.write('\t\t\t<HemisphereZone></HemisphereZone>\n')
stn.write('\t\t</StationCoord>\n')
stn.write('\t\t<Description></Description>\n')
stn.write('\t</DnaStation>\n')
# Write the measurement data to the output XML file
msr.write('\t<!--Type X GNSS baseline cluster (full correlations)-->\n')
msr.write('\t<DnaMeasurement>\n')
msr.write('\t\t<Type>X</Type>\n')
msr.write('\t\t<Ignore/>\n')
msr.write('\t\t<ReferenceFrame>%s</ReferenceFrame>\n' % args.refFrame)
msr.write('\t\t<Epoch>%s</Epoch>\n' % epoch)
msr.write('\t\t<Vscale>1.000</Vscale>\n')
msr.write('\t\t<Pscale>1.000</Pscale>\n')
msr.write('\t\t<Lscale>1.000</Lscale>\n')
msr.write('\t\t<Hscale>1.000</Hscale>\n')
msr.write('\t\t<Total>%s</Total>\n' % (len(data) - 1))
numCovar = len(data) - 2
for i in range(len(data)-1):
msr.write('\t\t<First>%s</First>\n' % (data[0]['site']))
msr.write('\t\t<Second>%s</Second>\n' % (data[i+1]['site']))
msr.write('\t\t<GPSBaseline>\n')
msr.write('\t\t\t<X>%20.14e</X>\n' % (deltas[3 * i, 0]))
msr.write('\t\t\t<Y>%20.14e</Y>\n' % (deltas[3 * i + 1, 0]))
msr.write('\t\t\t<Z>%20.14e</Z>\n' % (deltas[3 * i + 2, 0]))
msr.write('\t\t\t<SigmaXX>%20.14e</SigmaXX>\n' %
(delVCV[3 * i, 3 * i]))
msr.write('\t\t\t<SigmaXY>%20.14e</SigmaXY>\n' %
(delVCV[3 * i + 1, 3 * i]))
msr.write('\t\t\t<SigmaXZ>%20.14e</SigmaXZ>\n' %
(delVCV[3 * i + 2, 3 * i]))
msr.write('\t\t\t<SigmaYY>%20.14e</SigmaYY>\n' %
(delVCV[3 * i + 1, 3 * i + 1]))
msr.write('\t\t\t<SigmaYZ>%20.14e</SigmaYZ>\n' %
(delVCV[3 * i + 2, 3 * i + 1]))
msr.write('\t\t\t<SigmaZZ>%20.14e</SigmaZZ>\n' %
(delVCV[3 * i + 2, 3 * i + 2]))
for j in range(numCovar):
msr.write('\t\t\t<GPSCovariance>\n')
msr.write('\t\t\t\t<m11>%20.14e</m11>\n' %
(delVCV[3 * (i + 1) + 3 * j, 3 * i]))
msr.write('\t\t\t\t<m12>%20.14e</m12>\n' %
(delVCV[3 * (i + 1) + 3 * j + 1, 3 * i]))
msr.write('\t\t\t\t<m13>%20.14e</m13>\n' %
(delVCV[3 * (i + 1) + 3 * j + 2, 3 * i]))
msr.write('\t\t\t\t<m21>%20.14e</m21>\n' %
(delVCV[3 * (i + 1) + 3 * j, 3 * i + 1]))
msr.write('\t\t\t\t<m22>%20.14e</m22>\n' %
(delVCV[3 * (i + 1) + 3 * j + 1, 3 * i + 1]))
msr.write('\t\t\t\t<m23>%20.14e</m23>\n' %
(delVCV[3 * (i + 1) + 3 * j + 2, 3 * i + 1]))
msr.write('\t\t\t\t<m31>%20.14e</m31>\n' %
(delVCV[3 * (i + 1) + 3 * j, 3 * i + 2]))
msr.write('\t\t\t\t<m32>%20.14e</m32>\n' %
(delVCV[3 * (i + 1) + 3 * j + 1, 3 * i + 2]))
msr.write('\t\t\t\t<m33>%20.14e</m33>\n' %
(delVCV[3 * (i + 1) + 3 * j + 2, 3 * i + 2]))
msr.write('\t\t\t</GPSCovariance>\n')
numCovar -= 1
msr.write('\t\t</GPSBaseline>\n')
msr.write('\t\t<Source>%s</Source>\n' % os.path.basename(inputFile))
msr.write('\t</DnaMeasurement>\n')
stn.write('</DnaXmlFormat>\n')
msr.write('</DnaXmlFormat>\n')