-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathCalib.py
59 lines (49 loc) · 2.14 KB
/
Calib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import cv2
import glob
import yaml
#import pathlib
# termination criteria
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
# prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0)
objp = np.zeros((7*7,3), np.float32)
objp[:,:2] = np.mgrid[0:7,0:7].T.reshape(-1,2)
# Arrays to store object points and image points from all the images.
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
images = glob.glob(r'C:\\Users\\Nabeel Ahmad\\Documents\\Telllo\\18_05_2024\\images/*.jpeg')
# path = 'results'
# pathlib.Path(path).mkdir(parents=True, exist_ok=True)
found = 0
for fname in images: # Here, 10 can be changed to whatever number you like to choose
img = cv2.imread(fname) # Capture frame-by-frame
#print(images[im_i])
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Find the chess board corners
ret, corners = cv2.findChessboardCorners(gray, (7,7), None)
# If found, add object points, image points (after refining them)
if ret == True:
objpoints.append(objp) # Certainly, every loop objp is the same, in 3D.
corners2 = cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria)
imgpoints.append(corners2)
# Draw and display the corners
img = cv2.drawChessboardCorners(img, (7 ,7), corners2, ret)
found += 1
cv2.imshow('img', img)
cv2.waitKey(1000)
# if you want to save images with detected corners
# uncomment following 2 lines and lines 5, 18 and 19
# image_name = path + '/calibresult' + str(found) + '.png'
# cv2.imwrite(image_name, img)
print("Number of images used for calibration: ", found)
# When everything done, release the capture
# cap.release()
cv2.destroyAllWindows()
# calibration
ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)
# transform the matrix and distortion coefficients to writable lists
data = {'camera_matrix': np.asarray(mtx).tolist(),
'dist_coeff': np.asarray(dist).tolist()}
# and save it to a file
with open("calibration_matrix.yaml", "w") as f:
yaml.dump(data, f)