-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgradient_sandbox_2.py
155 lines (123 loc) · 5.88 KB
/
gradient_sandbox_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from fcm_analyzer import FCMAnalyzer
from random_data_generator import RandomDataGenerator
from tskmodel import TSKModel
from sklearn.metrics import mean_squared_error
import numpy as np
import FuzzySystem as fuzz
rdg = RandomDataGenerator()
fcm_analyzer = FCMAnalyzer(clusters=[x for x in range(2, 5)])
data = rdg.get_3D_normal_points(size=10, means=(0, 2, 0), stds=(1, 2, 0.5))
# data = np.array([[0, 2, 1], [2, 4, 5], [3, 6, 6]])
data_std = np.std(data, axis=1)
print("Data std: ", data_std)
data = data.T
x1 = fuzz.FuzzySet("X_LOW", fuzz.Gaussmf([data_std[0], -1], universe=[-5, 5]))
x2 = fuzz.FuzzySet("X_HIGH", fuzz.Gaussmf([data_std[0], 1], universe=[-5, 5]))
x_var = fuzz.FuzzyVariable("X", [x1, x2], universe=[-5, 5])
# x_var.show()
y1 = fuzz.FuzzySet("Y_LOW", fuzz.Gaussmf([data_std[1], -1], universe=[-10, 10]))
y2 = fuzz.FuzzySet("Y_HIGH", fuzz.Gaussmf([data_std[1], 1], universe=[-10, 10]))
y_var = fuzz.FuzzyVariable("Y", [y1, y2], universe=[-10, 10])
# y_var.show()
output1 = fuzz.TSKConsequent(params=[1, 1, 1], function="linear")
output2 = fuzz.TSKConsequent(params=[1, 1, 1], function="linear")
antecedent1 = fuzz.Antecedent(x_var["X_LOW"] & y_var["Y_HIGH"])
antecedent2 = fuzz.Antecedent(x_var["X_HIGH"] & y_var["Y_LOW"])
rule1 = fuzz.FuzzyRule(antecedent1, output1)
rule2 = fuzz.FuzzyRule(antecedent2, output2)
fis = fuzz.FuzzyInferenceSystem([rule1, rule2], and_op="prod", or_op="sum")
inputs = ({"X": 1, "Y": 1})
fis_result = fis.eval(inputs, verbose=True)
result = fuzz.TSKDefuzzifier(fis_result).eval()
print(result)
# clustering_result = fcm_analyzer.fit(data)
# fcm_analyzer.show_fpc()
# tsk_model = TSKModel([rule1, rule2])
# tsk_model.fit(input_data=data[:, :-1], input_labels=["X", "Y"], output_data=data[:, -1])
epochs = 10
lr = 0.004
labels = ["X", "Y"]
error_history = list()
for epoch in range(epochs):
predicted_outputs = list()
# calculating errors
for input_d, output_d in zip(data[:, :-1], data[:, -1]):
print(input_d, " ", output_d)
input_dict = dict()
for index, label in enumerate(labels):
input_dict[label] = input_d[index]
# print(input_dict)
fis_result = fis.eval(input_dict, verbose=True)
result = fuzz.TSKDefuzzifier(fis_result).eval()
error = output_d - result
for rule_index, rule in enumerate(fis.rules):
cons_params = rule.consequent.get_params()
new_coeffs = list()
for coeff_index in range(len(cons_params)):
new_coeff = None
if coeff_index == 0:
gradient = lr * error * fis_result.firing_strength[rule_index] / fis_result.firing_strength.sum(axis=0)
new_coeff = cons_params[coeff_index] - gradient
print("Gradient: ", gradient)
# print("New Coeff: ", new_coeff)
else:
gradient = lr * error * fis_result.firing_strength[rule_index] / fis_result.firing_strength.sum(axis=0) * input_d[coeff_index - 1]
new_coeff = cons_params[coeff_index] - gradient
print("Gradient: ", gradient)
# print("New Coeff: ", new_coeff)
# print("")
new_coeffs.append(new_coeff)
# print(new_coeffs)
rule.consequent.set_params(new_coeffs)
print("")
print("Predicted output: ", result)
print("Error: ", error)
print("")
for input_d, output_d in zip(data[:, :-1], data[:, -1]):
print(input_d, " ", output_d)
input_dict = dict()
for index, label in enumerate(labels):
input_dict[label] = input_d[index]
# print(input_dict)
fis_result = fis.eval(input_dict, verbose=True)
result = fuzz.TSKDefuzzifier(fis_result).eval()
predicted_outputs.append(result)
mse = mean_squared_error(data[:, -1], predicted_outputs)
error_history.append(mse)
print("Epoch mse: ", mse)
# print("********************************")
# print("\nUPDATE PHASE\n")
# print("********************************")
# # gradient update
# for input_d, output_d in zip(data[:, :-1], data[:, -1]):
# input_dict = dict()
# for index, label in enumerate(labels):
# input_dict[label] = input_d[index]
# fis_result = fis.eval(input_dict, verbose=True)
# print("Firing strength:", fis_result.firing_strength)
# print("Sum of firing strength:", fis_result.firing_strength.sum(axis=0))
# print("Division of firing strength:", fis_result.firing_strength[0] / fis_result.firing_strength.sum(axis=0))
# for rule_index, rule in enumerate(fis.rules):
# cons_params = rule.consequent.get_params()
# new_coeffs = list()
# for coeff_index in range(len(cons_params)):
# new_coeff = None
# if coeff_index == 0:
# gradient = lr * mse * fis_result.firing_strength[rule_index] / fis_result.firing_strength.sum(axis=0)
# new_coeff = cons_params[coeff_index] - gradient
# print("Gradient: ", gradient)
# # print("New Coeff: ", new_coeff)
# else:
# gradient = lr * mse * fis_result.firing_strength[rule_index] / fis_result.firing_strength.sum(axis=0) * input_d[coeff_index - 1]
# new_coeff = cons_params[coeff_index] - gradient
# print("Gradient: ", gradient)
# # print("New Coeff: ", new_coeff)
# # print("")
# new_coeffs.append(new_coeff)
# # print(new_coeffs)
# rule.consequent.set_params(new_coeffs)
# print("")
# for rule in fis.rules:
# print("New params: ", rule.consequent.get_params())
print(error_history)
print("Final error: ", error_history[-1])