-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfcm_analyzer.py
132 lines (101 loc) · 5.26 KB
/
fcm_analyzer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from skfuzzy.cluster import cmeans
from utils import feature_std
from cluster_validity import CLUSTER_VALIDITY_METHODS, PearsonCCV, SpearmanCCV
import numpy as np
class FCMAnalyzer:
def __init__(self, clusters=None, validity_method=None) -> None:
self.validity_method = None # validity method name
self.validity_index = None # validity method object
if clusters is None:
self.clusters = [x for x in range(2, 10)]
elif isinstance(clusters, list):
if 0 in clusters or 1 in clusters:
print("k cannot be equal 0 or 1")
return
self.clusters = clusters
else:
print("Error! Invalid type of clusters parameter")
if validity_method is None:
validity_method = "fpc"
elif validity_method in CLUSTER_VALIDITY_METHODS:
self.validity_method = validity_method
else:
print("Error! Invalid validity method")
def fit(self, data, error=0.01, maxiter=10) -> list:
if self.validity_method == "Pearson":
self.validity_index = PearsonCCV(data.T) # data is CxN because of cmeans, so there is need to transpose it
elif self.validity_method == "Spearman":
self.validity_index = SpearmanCCV(data.T)
else:
self.validity_index = None
# k can't be bigger than number of data points
if data.shape[1] <= max(self.clusters):
self.clusters = [x for x in range(2, data.shape[1] + 1)]
self.clustering_result = []
for cluster_count in self.clusters:
cntr, u, u0, d, jm, p, fpc = cmeans(data, cluster_count, 2, error=error, maxiter=maxiter, init=None)
# print("Membership matrix for k = ", cluster_count)
# print(u.T.shape)
# print(u.T)
clusters = list() # list for cluster members
cluster_indices = list() # list for indices for cluster with highest membership
# init k empty lists for cluster members
for index in range(cluster_count):
clusters.append(list())
# get maximum membership value for every data point
max_of_each_column = np.max(u, axis=0)
# find the index of cluster with highest membership for every data point
for index in range(len(max_of_each_column)):
index_of_cluster_for_vector = np.where(u[:, index] == max_of_each_column[index])
cluster_indices.append(index_of_cluster_for_vector[0][0])
# Fill the clusters list with data points with highest membership values
for col_index in range(u.shape[1]):
vector = data[:, col_index]
cluster_index = cluster_indices[col_index]
# if clusters[cluster_index] is None:
# clusters[cluster_index] = np.array()
clusters[cluster_index].append(vector.tolist())
crisp_cluster_stds = list()
for cluster in clusters:
# print("Cluster members count: ", len(cluster))
if len(cluster) == 0 or len(cluster) == 1:
crisp_cluster_stds.append(np.ones((data.T.shape[1])))
continue
crisp_cluster_stds.append(feature_std(cluster))
validity_value = self.validity_index.compute(u.T)
# print(crisp_cluster_stds)
# cluster_stds = feature_std(data.T)
# print("CLuster stds on U")
# print(cluster_stds)
self.clustering_result.append({
"k": cluster_count,
"fpc": fpc,
"cluster_centers": cntr,
"membership": {"points": data, "u": u},
"crisp_clusters": clusters,
# "crisp_cluster_stds": cluster_stds,
"crisp_cluster_stds": np.array(crisp_cluster_stds),
"validity_index": validity_value
})
return self.clustering_result
def show_fpc(self) -> None:
for c_r in self.clustering_result:
print("Fpc of clustering for k = {}; {}".format(c_r["k"], c_r["fpc"]))
def show_validity_indices(self) -> None:
print("{} index: ".format(self.validity_index.name))
for c_r in self.clustering_result:
print("Validity index of clustering for k = {}; {}".format(c_r["k"], c_r["validity_index"]))
def get_best_partition(self) -> object:
max_validity_index = 0
max_validity = self.clustering_result[max_validity_index]['validity_index']
for index in range(len(self.clustering_result)):
if self.clustering_result[index]['validity_index'] > max_validity:
max_validity_index = index
max_validity = self.clustering_result[index]['validity_index']
return self.clustering_result[max_validity_index]
def get_partition(self, k) -> object:
for index in range(len(self.clustering_result)):
if self.clustering_result[index]['k'] == k:
return self.clustering_result[index]
# if there is no k-partition, return best partition
return self.get_best_partition()