-
Notifications
You must be signed in to change notification settings - Fork 0
/
crm.py
227 lines (178 loc) · 7.12 KB
/
crm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import numpy as np
def crm(p,iters=3):
"""continous response model. Expects np.array of shape (students, questions)"""
if np.any(p>1) or np.any(p<0):
raise ValueError("p must be in [0,1]")
N, M = p.shape
def goz(p):
p=np.maximum(p,0.0001)
p=np.minimum(p,0.9999)
return np.log(p/(1-p))
def _goz(p):
p=0.0001+0.9998*p
return np.log(p/(1-p))
z=goz(p)
def theta_from_var(alpha,beta,gamma):
thetas=[]
for i in range(N):
theta=0.0
divide=0.0
for j in range(M):
theta+=(alpha[j]**2)*(beta[j]+gamma[j]*z[i,j])
divide+=alpha[j]**2
theta/=divide
thetas.append(theta)
thetas=np.array(thetas)
return thetas
def var_from_theta(theta):
M=np.mean(theta)
Mj=np.mean(z,axis=0)
Cj=np.mean(theta*z.T,axis=1)-M*Mj#I think p.T is correct
#VT=np.var(theta)#write this out?
VT=np.mean(theta**2)-M**2
gamma=VT/Cj
beta=M-gamma*Mj
#Vz=np.var(z,axis=0)#this too?
Vz=np.mean(z**2,axis=0)-Mj**2
Vj=np.abs(VT-2*gamma*Cj+(gamma**2)*Vz)
alpha=1/(np.sqrt(Vj)+1e-6)
#print(M.shape,Mj.shape,Cj.shape,VT.shape,gamma.shape,beta.shape,Vz.shape,Vj.shape,alpha.shape)
#exit()
return alpha,beta,gamma
alpha,beta,gamma=var_from_theta(np.mean(z,axis=1))
thetas=theta_from_var(alpha,beta,gamma)
for i in range(iters-1):
alpha,beta,gamma=var_from_theta(thetas)
print(np.sum(alpha),np.sum(beta),np.sum(gamma))
thetas=theta_from_var(alpha,beta,gamma)
return thetas
#def crm(p):
# return np.mean(p,axis=1)
def crm(p, delta_border=0.01, iter_max=100):
"""continous response model. Expects np.array of shape (students, questions)"""
if np.any(p>1) or np.any(p<0):
print(np.min(p,axis=0),np.max(p,axis=0))
raise ValueError("p must be in [0,1]")
N, M = p.shape
def goz(p):
p = np.maximum(p, 0.0001)
p = np.minimum(p, 0.9999)
return np.log(p / (1 - p))
def goz(p):
p = 0.0001 + 0.9998 * p
return np.log(p / (1 - p))
z = goz(p)
def estEM(data,alpha,beta,gamma):
sigma=1/(np.sum(alpha**2)+1)
# mu <-sigma*rowSums(t(matrix(ipar[,1]^2,ncol=N,nrow=n))*(t(matrix(ipar[,3],ncol=N,nrow=n))*data+t(matrix(ipar[,2],ncol=N,nrow=n))),na.rm=TRUE) # Equation 20 in Shojima's paper
#print(sigma.shape,alpha.shape,gamma.shape,(gamma*z).shape,z.shape,beta.shape)
#print((gamma*z+beta).shape)
#print((alpha**2*(gamma*z+beta)).shape)
#exit()
mu=sigma*np.sum(alpha**2*(gamma*z+beta),axis=0)#entirely copilot
mumean=np.mean(mu)
muvar=np.var(mu)
zijmeanlist=np.mean(z,axis=0)#this and next 2 mostly copilot
zijvarlist=np.var(z,axis=0)
zijmucovlist=np.mean(z*mu,axis=0)-mumean*zijmeanlist
gamma=(muvar+sigma)/zijmucovlist
beta=mumean-gamma*zijmeanlist
alpha=1/(np.sqrt((gamma**2)*zijvarlist+gamma*zijmucovlist))
return alpha,beta,gamma
def theta_from_var(alpha,beta,gamma):
thetas=[]
for i in range(N):
theta=0.0
divide=0.0
for j in range(M):
theta+=(alpha[j]**2)*(beta[j]+gamma[j]*z[i,j])
divide+=alpha[j]**2
theta/=divide
thetas.append(theta)
thetas=np.array(thetas)
return thetas
alpha,beta,gamma=estEM(z,np.ones(M),np.zeros(M),np.ones(M)-np.mean(z,axis=0))
last_alpha,last_beta,last_gamma=alpha,beta,gamma
thetas=theta_from_var(alpha,beta,gamma)
for i in range(iter_max):
alpha,beta,gamma=estEM(z,alpha,beta,gamma)
delta=np.sum(np.abs(alpha-last_alpha))+np.sum(np.abs(beta-last_beta))+np.sum(np.abs(gamma-last_gamma))
if delta<delta_border:
break
last_alpha,last_beta,last_gamma=alpha,beta,gamma
thetas=theta_from_var(alpha,beta,gamma)
return thetas, (alpha,beta,gamma)
def crm(p, delta_border=0.01, iter_max=10):
"""continous response model. Expects np.array of shape (students, questions)"""
#modification with many abs etc
#print("hello")
if np.any(p>1) or np.any(p<0):
print(np.min(p,axis=0),np.max(p,axis=0))
raise ValueError("p must be in [0,1]")
N, M = p.shape
def goz(p):
p = np.maximum(p, 0.0001)
p = np.minimum(p, 0.9999)
return np.log(p / (1 - p))
def goz(p):
p = 0.0001 + 0.9998 * p
return np.log(p / (1 - p))
z = goz(p)
def estEM(data,alpha,beta,gamma):
sigma=1/(np.sum(alpha**2)+1)
# mu <-sigma*rowSums(t(matrix(ipar[,1]^2,ncol=N,nrow=n))*(t(matrix(ipar[,3],ncol=N,nrow=n))*data+t(matrix(ipar[,2],ncol=N,nrow=n))),na.rm=TRUE) # Equation 20 in Shojima's paper
#print(sigma.shape,alpha.shape,gamma.shape,(gamma*z).shape,z.shape,beta.shape)
#print((gamma*z+beta).shape)
#print((alpha**2*(gamma*z+beta)).shape)
#exit()
mu=sigma*np.sum(alpha**2*(gamma*z+beta),axis=0)#entirely copilot
mumean=np.mean(mu)
muvar=np.var(mu)
zijmeanlist=np.mean(z,axis=0)#this and next 2 mostly copilot
zijvarlist=np.var(z,axis=0)
zijmucovlist=np.mean(z*mu,axis=0)-mumean*zijmeanlist
gamma=(muvar+sigma)/zijmucovlist
beta=mumean-gamma*zijmeanlist
alpha=1/(np.sqrt(np.abs((gamma**2)*zijvarlist+gamma*zijmucovlist)+1e-10))
return alpha,beta,gamma
def theta_from_var(alpha,beta,gamma):
if np.any(np.isnan(alpha)) or np.any(np.isnan(beta)) or np.any(np.isnan(gamma)):
return np.mean(data,axis=-1)
thetas=[]
for i in range(N):
theta=0.0
divide=0.0
for j in range(M):
theta+=(alpha[j]**2)*(beta[j]+gamma[j]*z[i,j])
divide+=alpha[j]**2
theta/=divide+1e-10
thetas.append(theta)
thetas=np.array(thetas)
return thetas
alpha,beta,gamma=estEM(z,np.ones(M),np.zeros(M),np.ones(M)-np.mean(z,axis=0))
last_alpha,last_beta,last_gamma=alpha,beta,gamma
thetas=theta_from_var(alpha,beta,gamma)
#print(thetas)
for i in range(iter_max):
alpha,beta,gamma=estEM(z,alpha,beta,gamma)
if np.any(np.isnan(alpha)) or np.any(np.isnan(beta)) or np.any(np.isnan(gamma)):
alpha,beta,gamma=last_alpha,last_beta,last_gamma
break
#print(np.any(np.isnan(alpha)),np.any(np.isnan(beta)),np.any(np.isnan(gamma)))
delta=np.sum(np.abs(alpha-last_alpha))+np.sum(np.abs(beta-last_beta))+np.sum(np.abs(gamma-last_gamma))
if delta<delta_border:
break
last_alpha,last_beta,last_gamma=alpha,beta,gamma
alpha=np.abs(alpha)
beta=np.abs(beta)
gamma=np.abs(gamma)
thetas=theta_from_var(alpha,beta,gamma)
return thetas, (alpha,beta,gamma)
if __name__=="__main__":
student1=[1.0,1.0,1.0,0.0,0.0]
#student1=[1.0,1.0,0.0,0.0,0.0]
student2=[1.0,0.0,0.0,1.0,0.0]
student3=[1.0,1.0,0.0,0.0,0.0]
students=np.stack([student1,student2,student3])
theta=crm(students)
print(theta)