forked from qq456cvb/Point-Transformers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cls.py
162 lines (135 loc) · 5.95 KB
/
train_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""
Author: Benny
Date: Nov 2019
"""
from dataset import ModelNetDataLoader
import argparse
import numpy as np
import os
import torch
import datetime
import logging
from pathlib import Path
from tqdm import tqdm
import sys
import provider
import importlib
import shutil
import hydra
import omegaconf
def test(model, loader, num_class=40):
mean_correct = []
class_acc = np.zeros((num_class,3))
for j, data in tqdm(enumerate(loader), total=len(loader)):
points, target = data
target = target[:, 0]
points, target = points.cuda(), target.cuda()
classifier = model.eval()
pred = classifier(points)
pred_choice = pred.data.max(1)[1]
for cat in np.unique(target.cpu()):
classacc = pred_choice[target==cat].eq(target[target==cat].long().data).cpu().sum()
class_acc[cat,0]+= classacc.item()/float(points[target==cat].size()[0])
class_acc[cat,1]+=1
correct = pred_choice.eq(target.long().data).cpu().sum()
mean_correct.append(correct.item()/float(points.size()[0]))
class_acc[:,2] = class_acc[:,0]/ class_acc[:,1]
class_acc = np.mean(class_acc[:,2])
instance_acc = np.mean(mean_correct)
return instance_acc, class_acc
@hydra.main(config_path='config', config_name='cls')
def main(args):
omegaconf.OmegaConf.set_struct(args, False)
'''HYPER PARAMETER'''
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
logger = logging.getLogger(__name__)
print(args.pretty())
'''DATA LOADING'''
logger.info('Load dataset ...')
DATA_PATH = hydra.utils.to_absolute_path('modelnet40_normal_resampled/')
TRAIN_DATASET = ModelNetDataLoader(root=DATA_PATH, npoint=args.num_point, split='train', normal_channel=args.normal)
TEST_DATASET = ModelNetDataLoader(root=DATA_PATH, npoint=args.num_point, split='test', normal_channel=args.normal)
trainDataLoader = torch.utils.data.DataLoader(TRAIN_DATASET, batch_size=args.batch_size, shuffle=True, num_workers=4)
testDataLoader = torch.utils.data.DataLoader(TEST_DATASET, batch_size=args.batch_size, shuffle=False, num_workers=4)
'''MODEL LOADING'''
args.num_class = 40
args.input_dim = 6 if args.normal else 3
shutil.copy(hydra.utils.to_absolute_path('models/{}/model.py'.format(args.model.name)), '.')
classifier = getattr(importlib.import_module('models.{}.model'.format(args.model.name)), 'PointTransformerCls')(args).cuda()
criterion = torch.nn.CrossEntropyLoss()
try:
checkpoint = torch.load('best_model.pth')
start_epoch = checkpoint['epoch']
classifier.load_state_dict(checkpoint['model_state_dict'])
logger.info('Use pretrain model')
except:
logger.info('No existing model, starting training from scratch...')
start_epoch = 0
if args.optimizer == 'Adam':
optimizer = torch.optim.Adam(
classifier.parameters(),
lr=args.learning_rate,
betas=(0.9, 0.999),
eps=1e-08,
weight_decay=args.weight_decay
)
else:
optimizer = torch.optim.SGD(classifier.parameters(), lr=0.01, momentum=0.9)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.3)
global_epoch = 0
global_step = 0
best_instance_acc = 0.0
best_class_acc = 0.0
best_epoch = 0
mean_correct = []
'''TRANING'''
logger.info('Start training...')
for epoch in range(start_epoch,args.epoch):
logger.info('Epoch %d (%d/%s):' % (global_epoch + 1, epoch + 1, args.epoch))
classifier.train()
for batch_id, data in tqdm(enumerate(trainDataLoader, 0), total=len(trainDataLoader), smoothing=0.9):
points, target = data
points = points.data.numpy()
points = provider.random_point_dropout(points)
points[:,:, 0:3] = provider.random_scale_point_cloud(points[:,:, 0:3])
points[:,:, 0:3] = provider.shift_point_cloud(points[:,:, 0:3])
points = torch.Tensor(points)
target = target[:, 0]
points, target = points.cuda(), target.cuda()
optimizer.zero_grad()
pred = classifier(points)
loss = criterion(pred, target.long())
pred_choice = pred.data.max(1)[1]
correct = pred_choice.eq(target.long().data).cpu().sum()
mean_correct.append(correct.item() / float(points.size()[0]))
loss.backward()
optimizer.step()
global_step += 1
scheduler.step()
train_instance_acc = np.mean(mean_correct)
logger.info('Train Instance Accuracy: %f' % train_instance_acc)
with torch.no_grad():
instance_acc, class_acc = test(classifier.eval(), testDataLoader)
if (instance_acc >= best_instance_acc):
best_instance_acc = instance_acc
best_epoch = epoch + 1
if (class_acc >= best_class_acc):
best_class_acc = class_acc
logger.info('Test Instance Accuracy: %f, Class Accuracy: %f'% (instance_acc, class_acc))
logger.info('Best Instance Accuracy: %f, Class Accuracy: %f'% (best_instance_acc, best_class_acc))
if (instance_acc >= best_instance_acc):
logger.info('Save model...')
savepath = 'best_model.pth'
logger.info('Saving at %s'% savepath)
state = {
'epoch': best_epoch,
'instance_acc': instance_acc,
'class_acc': class_acc,
'model_state_dict': classifier.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}
torch.save(state, savepath)
global_epoch += 1
logger.info('End of training...')
if __name__ == '__main__':
main()