Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

1.0-dev: fix interval(::Interval) and some ambiguities #554

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 21 additions & 25 deletions src/intervals/arithmetic/basic.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,17 +8,9 @@

+(a::Interval) = a # Not in the IEEE standard

"""
-(a::Interval)

Implement the `neg` function of the IEEE Std 1788-2015 (Table 9.1).
"""
-(a::F) where {F<:Interval} = F(-sup(a), -inf(a))


"""
+(a::Interval, b::Real)
+(a::Real, a::Interval)
+(a::Real, b::Interval)
+(a::Interval, b::Interval)

Implement the `add` function of the IEEE Std 1788-2015 (Table 9.1).
Expand All @@ -34,10 +26,18 @@ function +(a::F, b::F) where {F<:Interval}
(isempty(a) || isempty(b)) && return emptyinterval(F)
return @round(F, inf(a) + inf(b), sup(a) + sup(b))
end
+(a::Interval, b::Interval) = +(promote(a, b)...)

"""
-(a::Interval)

Implement the `neg` function of the IEEE Std 1788-2015 (Table 9.1).
"""
-(a::F) where {F<:Interval} = F(-sup(a), -inf(a))

"""
-(a::Interval, b::Real)
-(a::Real, a::Interval)
-(a::Real, b::Interval)
-(a::Interval, b::Interval)

Implement the `sub` function of the IEEE Std 1788-2015 (Table 9.1).
Expand All @@ -46,19 +46,18 @@ function -(a::F, b::T) where {T<:Real, F<:Interval{T}}
isempty(a) && return emptyinterval(F)
return @round(F, inf(a) - b, sup(a) - b)
end

function -(b::T, a::F) where {T, F<:Interval{T}}
isempty(a) && return emptyinterval(F)
return @round(F, b - sup(a), b - inf(a))
end
-(a::F, b::Real) where {F<:Interval} = a - F(b)
-(a::Real, b::F) where {F<:Interval} = F(a) - b

function -(a::F, b::F) where {F<:Interval}
(isempty(a) || isempty(b)) && return emptyinterval(F)
return @round(F, inf(a) - sup(b), sup(a) - inf(b))
end

-(a::F, b::Real) where {F<:Interval} = a - F(b)
-(a::Real, b::F) where {F<:Interval} = F(a) - b
-(a::Interval, b::Interval) = -(promote(a, b)...)

"""
scale(α, a::Interval)
Expand All @@ -71,7 +70,7 @@ For efficiency, does not check that the constant is positive.

"""
*(a::Interval, b::Real)
*(a::Real, a::Interval)
*(a::Real, b::Interval)
*(a::Interval, b::Interval)

Implement the `mul` function of the IEEE Std 1788-2015 (Table 9.1).
Expand All @@ -88,37 +87,33 @@ function *(x::T, a::F) where {T<:Real, F<:Interval{T}}
return @round(F, sup(a)*x, inf(a)*x)
end
end

*(x::T, a::F) where {T<:Real, S, F<:Interval{S}} = Interval{S}(x) * a
*(a::F, x::T) where {T<:Real, S, F<:Interval{S}} = x*a

function *(a::F, b::F) where {F<:Interval}
(isempty(a) || isempty(b)) && return emptyinterval(F)

(isthinzero(a) || isthinzero(b)) && return zero(F)

(isbounded(a) && isbounded(b)) && return mult(*, a, b)

return mult((x, y, r) -> unbounded_mult(F, x, y, r), a, b)
end

*(a::Interval, b::Interval) = *(promote(a, b)...)

# Helper functions for multiplication
function unbounded_mult(::Type{F}, x::T, y::T, r::RoundingMode) where {T, F<:Interval{T}}
iszero(x) && return sign(y)*zero_times_infinity(T)
iszero(y) && return sign(x)*zero_times_infinity(T)
iszero(x) && return sign(y) * zero_times_infinity(T)
iszero(y) && return sign(x) * zero_times_infinity(T)
return *(x, y, r)
end

function mult(op, a::F, b::F) where {T, F<:Interval{T}}
if inf(b) >= zero(T)
inf(a) >= zero(T) && return @round(F, op(inf(a), inf(b)), op(sup(a), sup(b)))
sup(a) <= zero(T) && return @round(F, op(inf(a), sup(b)), op(sup(a), inf(b)))
return @round(F, inf(a)*sup(b), sup(a)*sup(b)) # when zero(T) ∈ a
return @round(F, inf(a)*sup(b), sup(a)*sup(b)) # zero(T) ∈ a
elseif sup(b) <= zero(T)
inf(a) >= zero(T) && return @round(F, op(sup(a), inf(b)), op(inf(a), sup(b)))
sup(a) <= zero(T) && return @round(F, op(sup(a), sup(b)), op(inf(a), inf(b)))
return @round(F, sup(a)*inf(b), inf(a)*inf(b)) # when zero(T) ∈ a
return @round(F, sup(a)*inf(b), inf(a)*inf(b)) # zero(T) ∈ a
else
inf(a) > zero(T) && return @round(F, op(sup(a), inf(b)), op(sup(a), sup(b)))
sup(a) < zero(T) && return @round(F, op(inf(a), sup(b)), op(inf(a), inf(b)))
Expand All @@ -129,7 +124,7 @@ end

"""
/(a::Interval, b::Real)
/(a::Real, a::Interval)
/(a::Real, b::Interval)
/(a::Interval, b::Interval)

Implement the `div` function of the IEEE Std 1788-2015 (Table 9.1).
Expand Down Expand Up @@ -182,6 +177,7 @@ function /(a::F, b::F) where {T, F<:Interval{T}}
end
end
end
/(a::Interval, b::Interval) = /(promote(a, b)...)

"""
inv(a::Interval)
Expand Down
17 changes: 10 additions & 7 deletions src/intervals/construction.jl
Original file line number Diff line number Diff line change
Expand Up @@ -115,6 +115,11 @@ Interval(x::Irrational) = Interval{default_bound()}(x)
return :(return $res) # Set body of the function to return the precomputed result
end

# promotion

Base.promote_rule(::Type{Interval{T}}, ::Type{Interval{S}}) where {T,S} =
Interval{promote_type(T, S)}

"""
interval(a, b)

Expand All @@ -123,15 +128,13 @@ If so, then an `Interval(a, b)` object is returned;
if not, a warning is printed and the empty interval is returned.
"""
function interval(a::T, b::S) where {T<:Real, S<:Real}
if !is_valid_interval(a, b)
@warn "Invalid input, empty interval is returned"
return emptyinterval(promote_type(T, S))
end

return Interval(a, b)
is_valid_interval(a, b) && return Interval(a, b)
@warn "Invalid input, empty interval is returned"
return emptyinterval(promote_type(T, S))
end

interval(a::Real) = interval(a, a)
interval(a::Interval) = interval(inf(a), sup(a)) # Check the validity of the interval

const checked_interval = interval

Expand Down Expand Up @@ -240,4 +243,4 @@ function bigequiv(x::AbstractFloat)
end

float(x::Interval{T}) where T = atomic(Interval{float(T)}, x)
big(x::Interval) = atomic(Interval{BigFloat}, x)
big(x::Interval) = atomic(Interval{BigFloat}, x)
18 changes: 18 additions & 0 deletions test/interval_tests/construction.jl
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,9 @@ using Test
@test big(ℯ) in Interval{Float32}(0, ℯ)
@test big(π) in Interval{Float32}(π, 4)

@test interval(Interval(pi)) ≛ Interval(pi)
@test interval(Interval(NaN, -Inf)) ≛ emptyinterval()

# a < Inf and b > -Inf
@test @interval("1e300") ≛ Interval(9.999999999999999e299, 1.0e300)
@test @interval("-1e307") ≛ Interval(-1.0000000000000001e307, -1.0e307)
Expand Down Expand Up @@ -164,6 +167,16 @@ end
@test convert(Interval{BigFloat}, x) === x
end

@testset "Promotion between intervals" begin
x = Interval{Float64}(π)
y = Interval{BigFloat}(π)
x_, y_ = promote(x, y)

@test promote_type(typeof(x), typeof(y)) == Interval{BigFloat}
@test bounds(x_) == (BigFloat(inf(x), RoundDown), BigFloat(sup(x), RoundUp))
@test y_ ≛ y
end

@testset "Typed intervals" begin
@test typeof(@interval Float64 1 2) == Interval{Float64}
@test typeof(@interval 1 2) == Interval{Float64}
Expand All @@ -185,6 +198,11 @@ end

a = convert(Interval{Float64}, @biginterval(3, 4))
@test typeof(a) == Interval{Float64}

pi64, pi32 = Interval{Float64}(pi), Interval{Float32}(pi)
x, y = promote(pi64, pi32)
@test x ≛ pi64
@test y ≛ Interval{Float64}(pi32)
end

@testset "Interval{T} constructor" begin
Expand Down
6 changes: 6 additions & 0 deletions test/interval_tests/numeric.jl
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,12 @@ end
@test a + b ≛ Interval(+(a.lo, b.lo, RoundDown), +(a.hi, b.hi, RoundUp))
@test -a ≛ Interval(-a.hi, -a.lo)
@test a - b ≛ Interval(-(a.lo, b.hi, RoundDown), -(a.hi, b.lo, RoundUp))
for f in (:+, :-, :*, :/)
@eval begin
@test $f(Interval{Float64}(pi), Interval{Float32}(pi)) ≛
$f(Interval{Float64}(pi), Interval{Float64}(Interval{Float32}(pi)))
end
end
@test Interval(1//4,1//2) + Interval(2//3) ≛ Interval(11//12, 7//6)
@test_broken Interval(1//4,1//2) - Interval(2//3) ≛ Interval(-5//12, -1//6)

Expand Down