Skip to content

Latest commit

 

History

History
224 lines (182 loc) · 8.52 KB

README.md

File metadata and controls

224 lines (182 loc) · 8.52 KB

YAXArrays.jl

License: MIT DOI Downloads

What is YAXArrays.jl?

Yet Another XArray-like Julia Package

YAXArrays.jl is a package to handle gridded data that is larger than memory. It enables the DiskArrays.jl package to access the data lazily and provides map and mapCube to apply user defined functions on arbitrary subsets of the axes. These computations are also easily parallelized either via Distributed or via Threads.

Citing YAXArrays

If you use YAXArrays for a scientific publication, please cite the Zenodo upload the following way:

Fabian Gans, Felix Cremer, Lazaro Alonso, Guido Kraemer, Pavel V. Dimens, Martin Gutwin, Martin,
Francesco Martinuzzi, Daniel E. Pabon-Moreno, Daniel Loos, Markus Zehner, Mohammed Ayoub Chettouh,
Philippe Roy, Qi Zhang, ckrich, Felix Glaser, & linamaes. (2023).
JuliaDataCubes/YAXArrays.jl: v0.5.0 (v0.5.0) Zenodo. https://doi.org/10.5281/zenodo.8121199
BibTeX entry:
@software{fabian_gans_2023_8121199,
  author       = {Fabian Gans and
                  Felix Cremer and
                  Lazaro Alonso and
                  Guido Kraemer and
                  Pavel V. Dimens and
                  Martin Gutwin and
                  Martin and
                  Francesco Martinuzzi and
                  Daniel E. Pabon-Moreno and
                  Daniel Loos and
                  Markus Zehner and
                  Mohammed Ayoub Chettouh and
                  Philippe Roy and
                  Qi Zhang and
                  ckrich and
                  Felix Glaser and
                  linamaes},
  title        = {JuliaDataCubes/YAXArrays.jl: v0.5.0},
  month        = jul,
  year         = 2023,
  publisher    = {Zenodo},
  version      = {v0.5.0},
  doi          = {10.5281/zenodo.8121199},
  url          = {https://doi.org/10.5281/zenodo.8121199}
}

Cite all versions by using 10.5281/zenodo.7505394.

ℹ️ Switch to DimensionalData ℹ️

With YAXArrays.jl 0.5 we switched the underlying data type to be a subtype of the DimensionalData.jl types. Therefore the indexing with named dimensions changed to the DimensionalData syntax. See the DimensionalData.jl docs and the Switch to DimensionalData section in our docs.

Installation

Install the YAXArrays package:

julia>]
pkg> add YAXArrays

You may check the installed version with:

] st YAXArrays

Start using the package:

using YAXArrays

Quick start

Let's assemble a YAXArray with 4 dimensions i.e. time, x,y and a variable dimension with two variables.

using YAXArrays
using YAXArrays: YAXArrays as YAX

axlist = (
    YAX.time(range(1, 20, length=20)),
    lon(range(1, 10, length=10)),
    lat(range(1, 5, length=15)),
    Variables(["var1", "var2"]))
↓ time     1.0:1.0:20.0,
→ lon      1.0:1.0:10.0,
↗ lat      1.0:0.2857142857142857:5.0,
⬔ Variables ["var1", "var2"]

and the corresponding data.

data = rand(20, 10, 15, 2)

You might also add additional properties via a Dictionary, namely

props = Dict(
    "time" => "days",
    "x" => "lon",
    "y" => "lat",
    "var1" => "one of your variables",
    "var2" => "your second variable",
)

And our first YAXArray is built with:

ds = YAXArray(axlist, data, props)
╭────────────────────────────────╮
│ 20×10×15×2 YAXArray{Float64,4} │
├────────────────────────────────┴─────────────────────────────────────────────── dims ┐
  ↓ time     Sampled{Float64} 1.0:1.0:20.0 ForwardOrdered Regular Points,
  → lon      Sampled{Float64} 1.0:1.0:10.0 ForwardOrdered Regular Points,
  ↗ lat      Sampled{Float64} 1.0:0.2857142857142857:5.0 ForwardOrdered Regular Points,
  ⬔ Variable Categorical{String} ["var1", "var2"] ForwardOrdered
├──────────────────────────────────────────────────────────────────────────── metadata ┤
  Dict{String, String} with 5 entries:
  "var1" => "one of your variables"
  "time" => "days"
  "x"    => "lon"
  "var2" => "your second variable"
  "y"    => "lat"
├────────────────────────────────────────────────────────────────────────── file size ┤ 
  file size: 46.88 KB
└─────────────────────────────────────────────────────────────────────────────────────┘

Getting data back from a YAXArray

For axis can be via .

ds.lon
lon Sampled{Float64} ForwardOrdered Regular Points
wrapping: 1.0:1.0:10.0

or better yet via lookup

lookup(ds, :lon)
Sampled{Float64} ForwardOrdered Regular Points
wrapping: 1.0:1.0:10.0

note that also the .data field can be use

lookup(ds, :lon).data
1.0:1.0:10.0

The data for one variables, i.e. var1 can be accessed via:

ds[Variables=At("var1")]
╭──────────────────────────────╮
│ 20×10×15 YAXArray{Float64,3} │
├──────────────────────────────┴────────────────────────────────────────────── dims ┐
  ↓ time Sampled{Float64} 1.0:1.0:20.0 ForwardOrdered Regular Points,
  → lon  Sampled{Float64} 1.0:1.0:10.0 ForwardOrdered Regular Points,
  ↗ lat  Sampled{Float64} 1.0:0.2857142857142857:5.0 ForwardOrdered Regular Points
├───────────────────────────────────────────────────────────────────────── metadata ┤
  Dict{String, String} with 5 entries:
  "var1" => "one of your variables"
  "time" => "days"
  "x"    => "lon"
  "var2" => "your second variable"
  "y"    => "lat"
├──────────────────────────────────────────────────────────────────────── file size ┤ 
  file size: 23.44 KB
└───────────────────────────────────────────────────────────────────────────────────┘

and again, you can use the .data field to actually get the data.

For more please take a look at the documentation.