-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpolynomial.jl
208 lines (175 loc) · 5.81 KB
/
polynomial.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# TODO Add to MultivariatePolynomials
MP.variables(p::SA.AlgebraElement) = MP.variables(explicit_basis(p))
Base.keytype(p::MP.AbstractPolynomialLike) = MP.monomial_type(p)
SA.value_type(p::MP.AbstractPolynomialLike) = MP.coefficient_type(p)
#Base.keys(p::MP.AbstractPolynomial) = MP.monomials(p)
SA.nonzero_pairs(p::MP.AbstractPolynomialLike) = MP.terms(p)
function Base.similar(p::PT, ::Type{T}) where {PT<:MP.AbstractPolynomial,T}
return convert(MP.similar_type(PT, T), copy(p)) # Missing the `copy` in MP
end
function Base.getindex(p::MP.AbstractPolynomialLike, mono::MP.AbstractMonomial)
return MP.coefficient(p, mono)
end
Base.iterate(t::MP.Term) = iterate(t, 1)
function Base.iterate(t::MP.Term, state)
if state == 1
return MP.monomial(t), 2
elseif state == 2
return MP.coefficient(t), 3
else
return nothing
end
end
function SA.unsafe_push!(p::MP.AbstractPolynomial, mono::MP.AbstractMonomial, α)
return MA.operate!(MA.add_mul, p, α, mono)
end
function MA.operate!(
::SA.UnsafeAddMul{typeof(*)},
mc::MP.AbstractPolynomial,
val,
c::MP.AbstractPolynomialLike,
)
return MA.operate!(MA.add_mul, mc, val, c)
end
MA.operate!(::typeof(SA.canonical), p::MP.AbstractPolynomial) = p
function MA.promote_operation(
::typeof(SA.canonical),
::Type{P},
) where {P<:MP.AbstractPolynomialLike}
return P
end
abstract type AbstractMonomialIndexed end
"""
struct Polynomial{B<:AbstractMonomialIndexed,M<:MP.AbstractMonomial}
monomial::M
function Polynomial{B}(mono::MP.AbstractMonomial) where {B}
return new{B,typeof(mono)}(mono)
end
end
Polynomial of basis `FullBasis{B,M}()` at index `monomial`.
"""
struct Polynomial{B<:AbstractMonomialIndexed,M<:MP.AbstractMonomial}
monomial::M
function Polynomial{B}(mono::MP.AbstractMonomial) where {B}
return new{B,typeof(mono)}(mono)
end
end
function Base.hash(p::Polynomial{B}, u::UInt) where {B}
return hash(B, hash(p.monomial, u))
end
function Base.isequal(p::Polynomial{B}, q::Polynomial{B}) where {B}
return isequal(p.monomial, q.monomial)
end
Base.isone(p::Polynomial) = isone(p.monomial)
# Needed for `BoundsError`
Base.iterate(p::Polynomial) = p, nothing
Base.iterate(::Polynomial, ::Nothing) = nothing
function Polynomial{B}(v::MP.AbstractVariable) where {B}
return Polynomial{B}(MP.monomial(v))
end
function Base.:(==)(p::Polynomial{B}, q::Polynomial{B}) where {B}
return p.monomial == q.monomial
end
MP.variables(p::Polynomial) = MP.variables(p.monomial)
MP.nvariables(p::Polynomial) = MP.nvariables(p.monomial)
MP.monomial_type(::Type{<:SA.SparseCoefficients{K}}) where {K} = K
MP.polynomial(p::Polynomial) = MP.polynomial(algebra_element(p))
function algebra_element(p, basis::SA.AbstractBasis)
return SA.AlgebraElement(p, algebra(basis))
end
function _algebra_element(p, ::Type{B}) where {B<:AbstractMonomialIndexed}
return algebra_element(
sparse_coefficients(p),
FullBasis{B,MP.monomial_type(typeof(p))}(),
)
end
function algebra_element(p::Polynomial{B,M}) where {B,M}
return _algebra_element(p.monomial, B)
end
function Base.:*(a::Polynomial{B}, b::Polynomial{B}) where {B}
return algebra_element(
Mul{B}()(a.monomial, b.monomial),
FullBasis{B,promote_type(typeof(a.monomial), typeof(b.monomial))}(),
)
end
function Base.:*(a::Polynomial{B}, b::SA.AlgebraElement) where {B}
return _algebra_element(a) * b
end
function _show(io::IO, mime::MIME, p::Polynomial{B}) where {B}
if B != Monomial
print(io, B)
print(io, "(")
end
print(io, SA.trim_LaTeX(mime, sprint(show, mime, p.monomial)))
if B != Monomial
print(io, ")")
end
return
end
function Base.show(io::IO, mime::MIME"text/latex", p::Polynomial)
print(io, "\$\$ ")
_show(io, mime, p)
print(io, " \$\$")
return
end
function Base.show(io::IO, mime::MIME"text/plain", p::Polynomial)
return _show(io, mime, p)
end
function Base.show(io::IO, mime::MIME"text/print", p::Polynomial)
return _show(io, mime, p)
end
Base.show(io::IO, p::Polynomial) = show(io, MIME"text/plain"(), p)
Base.print(io::IO, p::Polynomial) = show(io, MIME"text/print"(), p)
function Base.zero(::Type{Polynomial{B,M}}) where {B,M}
return _algebra_element(zero(MP.polynomial_type(M, Rational{Int})), B)
end
Base.zero(p::Polynomial) = zero(typeof(p))
function convert_basis(basis::SA.AbstractBasis, p::MP.AbstractPolynomialLike)
return convert_basis(basis, _algebra_element(p, Monomial))
end
function convert_basis(basis::SA.AbstractBasis, p::SA.AlgebraElement)
return SA.AlgebraElement(SA.coeffs(p, basis), algebra(basis))
end
struct Mul{B<:AbstractMonomialIndexed} <: SA.MultiplicativeStructure end
function MA.operate_to!(
p::MP.AbstractPolynomial,
op::Mul,
args::Vararg{MP.AbstractPolynomialLike,N},
) where {N}
MA.operate!(zero, p)
MA.operate!(SA.UnsafeAddMul(op), p, args...)
MA.operate!(SA.canonical, p)
return p
end
function MP.polynomial(a::SA.AbstractCoefficients)
return MP.polynomial(collect(SA.values(a)), collect(SA.keys(a)))
end
function MP.polynomial(a::SA.AlgebraElement)
return MP.polynomial(
SA.coeffs(a, FullBasis{Monomial,MP.monomial_type(typeof(a))}()),
)
end
function Base.isapprox(
p::MP.AbstractPolynomialLike,
a::SA.AlgebraElement;
kws...,
)
return isapprox(p, MP.polynomial(a); kws...)
end
function Base.isapprox(a::SA.AlgebraElement, b::SA.AlgebraElement; kws...)
return isapprox(MP.polynomial(a), b; kws...)
end
function Base.isapprox(
a::SA.AlgebraElement,
p::MP.AbstractPolynomialLike;
kws...,
)
return isapprox(p, a; kws...)
end
function Base.isapprox(a::SA.AlgebraElement, α::Number; kws...)
return isapprox(
a,
α * constant_algebra_element(typeof(SA.basis(a)), typeof(α));
kws...,
)
end