-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmonomial.jl
466 lines (385 loc) · 13.5 KB
/
monomial.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
struct FullBasis{B<:AbstractMonomialIndexed,M<:MP.AbstractMonomial} <:
SA.ImplicitBasis{Polynomial{B,M},M} end
function Base.getindex(::FullBasis{B,M}, mono::M) where {B,M}
return Polynomial{B}(mono)
end
function Base.getindex(::FullBasis{B,M}, p::Polynomial{B,M}) where {B,M}
return p.monomial
end
SA.mstructure(::FullBasis{B}) where {B} = Mul{B}()
MP.monomial_type(::Type{<:FullBasis{B,M}}) where {B,M} = M
function MP.polynomial_type(basis::FullBasis{B,M}, ::Type{T}) where {B,M,T}
return MP.polynomial_type(typeof(basis), T)
end
# TODO Move it to SA as :
# struct SubBasis{T,I,B<:SA.ImplicitBasis{T,I},V<:AbstractVector{I}} <: SA.ExplicitBasis{T,Int}
# implicit::B
# indices::V
# end
struct SubBasis{B<:AbstractMonomialIndexed,M,V<:AbstractVector{M}} <:
SA.ExplicitBasis{Polynomial{B,M},Int}
monomials::V
end
# Overload some of the `AbstractVector` interface for convenience
Base.isempty(basis::SubBasis) = isempty(basis.monomials)
Base.eachindex(basis::SubBasis) = eachindex(basis.monomials)
_iterate(::SubBasis, ::Nothing) = nothing
function _iterate(basis::SubBasis{B}, elem_state) where {B}
return parent(basis)[elem_state[1]], elem_state[2]
end
Base.iterate(basis::SubBasis) = _iterate(basis, iterate(basis.monomials))
Base.iterate(basis::SubBasis, s) = _iterate(basis, iterate(basis.monomials, s))
Base.length(basis::SubBasis) = length(basis.monomials)
Base.firstindex(basis::SubBasis) = firstindex(basis.monomials)
Base.lastindex(basis::SubBasis) = lastindex(basis.monomials)
MP.nvariables(basis::SubBasis) = MP.nvariables(basis.monomials)
MP.variables(basis::SubBasis) = MP.variables(basis.monomials)
Base.parent(::SubBasis{B,M}) where {B,M} = FullBasis{B,M}()
function Base.getindex(basis::SubBasis, index::Int)
return parent(basis)[basis.monomials[index]]
end
function monomial_index(basis::SubBasis, mono::MP.AbstractMonomial)
i = searchsortedfirst(basis.monomials, mono)
if i in eachindex(basis.monomials) && basis.monomials[i] == mono
return i
end
return
end
function Base.getindex(basis::SubBasis{B,M}, value::Polynomial{B,M}) where {B,M}
mono = monomial_index(basis, parent(basis)[value])
if isnothing(mono)
throw(BoundsError(basis, value))
end
return mono
end
function explicit_basis_covering(::FullBasis{B}, target::SubBasis{B}) where {B}
return SubBasis{B}(target.monomials)
end
const MonomialIndexedBasis{B,M} = Union{SubBasis{B,M},FullBasis{B,M}}
MP.monomial_type(::Type{<:SubBasis{B,M}}) where {B,M} = M
# The `i`th index of output is the index of occurence of `x[i]` in `y`,
# or `0` if it does not occur.
function multi_findsorted(x, y)
I = zeros(Int, length(x))
j = 1
for i in eachindex(x)
while j ≤ length(y) && x[i] > y[j]
j += 1
end
if j ≤ length(y) && x[i] == y[j]
I[i] = j
end
end
return I
end
function merge_bases(basis1::MB, basis2::MB) where {MB<:SubBasis}
monos = MP.merge_monomial_vectors([basis1.monomials, basis2.monomials])
I1 = multi_findsorted(monos, basis1.monomials)
I2 = multi_findsorted(monos, basis2.monomials)
return MB(monos), I1, I2
end
# Unsafe because we don't check that `monomials` is sorted and without duplicates
function unsafe_basis(
::Type{B},
monomials::AbstractVector{M},
) where {B<:AbstractMonomialIndexed,M<:MP.AbstractMonomial}
return SubBasis{B,M,typeof(monomials)}(monomials)
end
function Base.getindex(::FullBasis{B,M}, monomials::AbstractVector) where {B,M}
return unsafe_basis(B, MP.monomial_vector(monomials)::AbstractVector{M})
end
function SubBasis{B}(
monomials::AbstractVector,
) where {B<:AbstractMonomialIndexed}
return unsafe_basis(
B,
MP.monomial_vector(monomials)::AbstractVector{<:MP.AbstractMonomial},
)
end
SubBasis{B}(monos::Tuple) where {B} = SubBasis{B}([monos...])
function Base.copy(basis::SubBasis)
return typeof(basis)(copy(basis.monomials))
end
function Base.:(==)(a::SubBasis{B}, b::SubBasis{B}) where {B}
return a.monomials == b.monomials
end
function algebra_type(::Type{BT}) where {B,M,BT<:MonomialIndexedBasis{B,M}}
return Algebra{BT,B,M}
end
implicit_basis(::SubBasis{B,M}) where {B,M} = FullBasis{B,M}()
implicit_basis(basis::FullBasis) = basis
function implicit(a::SA.AlgebraElement)
basis = implicit_basis(SA.basis(a))
return algebra_element(SA.coeffs(a, basis), basis)
end
function MA.promote_operation(
::typeof(implicit),
::Type{E},
) where {AG,T,E<:SA.AlgebraElement{AG,T}}
BT = MA.promote_operation(implicit_basis, MA.promote_operation(SA.basis, E))
A = MA.promote_operation(algebra, BT)
M = MP.monomial_type(BT)
return SA.AlgebraElement{A,T,SA.SparseCoefficients{M,T,Vector{M},Vector{T}}}
end
function MA.promote_operation(
::typeof(implicit_basis),
::Type{<:Union{FullBasis{B,M},SubBasis{B,M}}},
) where {B,M}
return FullBasis{B,M}
end
function _explicit_basis(coeffs, ::FullBasis{B}) where {B}
return SubBasis{B}(SA.keys(coeffs))
end
_explicit_basis(_, basis::SubBasis) = basis
function explicit_basis(p::MP.AbstractPolynomialLike)
return SubBasis{Monomial}(MP.monomials(p))
end
function explicit_basis(a::SA.AlgebraElement)
return _explicit_basis(SA.coeffs(a), SA.basis(a))
end
function explicit_basis_type(::Type{FullBasis{B,M}}) where {B,M}
return SubBasis{B,M,MP.monomial_vector_type(M)}
end
function empty_basis(
::Type{<:SubBasis{B,M}},
) where {B<:AbstractMonomialIndexed,M}
return unsafe_basis(B, MP.empty_monomial_vector(M))
end
function maxdegree_basis(
::FullBasis{B},
variables,
maxdegree::Int,
) where {B<:AbstractMonomialIndexed}
return unsafe_basis(B, MP.monomials(variables, 0:maxdegree))
end
MP.variables(c::SA.AbstractCoefficients) = MP.variables(SA.keys(c))
_lazy_collect(v::AbstractVector) = collect(v)
_lazy_collect(v::Vector) = v
function sparse_coefficients(p::MP.AbstractPolynomial)
return SA.SparseCoefficients(
_lazy_collect(MP.monomials(p)),
_lazy_collect(MP.coefficients(p)),
)
end
function sparse_coefficients(t::MP.AbstractTermLike)
return SA.SparseCoefficients((MP.monomial(t),), (MP.coefficient(t),))
end
function MA.promote_operation(
::typeof(sparse_coefficients),
::Type{P},
) where {P<:MP.AbstractPolynomialLike}
M = MP.monomial_type(P)
T = MP.coefficient_type(P)
return SA.SparseCoefficients{M,T,Vector{M},Vector{T}}
end
function algebra_element(p::MP.AbstractPolynomialLike)
return algebra_element(
sparse_coefficients(p),
FullBasis{Monomial,MP.monomial_type(p)}(),
)
end
function algebra_element(f::Function, basis::SubBasis)
return algebra_element(map(f, eachindex(basis)), basis)
end
_one_if_type(α) = α
_one_if_type(::Type{T}) where {T} = one(T)
function constant_algebra_element_type(
::Type{BT},
::Type{T},
) where {B,M,BT<:FullBasis{B,M},T}
A = MA.promote_operation(algebra, BT)
return SA.AlgebraElement{A,T,SA.SparseCoefficients{M,T,Vector{M},Vector{T}}}
end
function constant_algebra_element(::Type{FullBasis{B,M}}, α) where {B,M}
return algebra_element(
sparse_coefficients(
MP.polynomial(MP.term(_one_if_type(α), MP.constant_monomial(M))),
),
FullBasis{B,M}(),
)
end
function constant_algebra_element_type(
::Type{B},
::Type{T},
) where {B<:SubBasis,T}
A = MA.promote_operation(algebra, B)
return SA.AlgebraElement{A,T,Vector{T}}
end
function constant_algebra_element(::Type{<:SubBasis{B,M}}, α) where {B,M}
return algebra_element(
[_one_if_type(α)],
SubBasis{B}([MP.constant_monomial(M)]),
)
end
# TODO use Base.show_vector here, maybe by wrapping the `generator` vector
# into something that spits objects wrapped with the `mime` type
function _show_vector(io::IO, mime::MIME, v)
print(io, '[')
first = true
for el in v
if !first
print(io, ", ")
end
first = false
show(io, mime, el)
end
return print(io, ']')
end
function _show(io::IO, mime::MIME, basis::SubBasis{B}) where {B}
print(io, "SubBasis{$(nameof(B))}(")
_show_vector(io, mime, basis.monomials)
print(io, ')')
return
end
function Base.show(io::IO, mime::MIME"text/plain", basis::SubBasis)
return _show(io, mime, basis)
end
function Base.show(io::IO, mime::MIME"text/print", basis::SubBasis)
return _show(io, mime, basis)
end
function Base.print(io::IO, basis::SubBasis)
return show(io, MIME"text/print"(), basis)
end
function Base.show(io::IO, basis::SubBasis)
return show(io, MIME"text/plain"(), basis)
end
abstract type AbstractMonomial <: AbstractMonomialIndexed end
function explicit_basis_covering(
::FullBasis{B},
target::SubBasis{<:AbstractMonomial},
) where {B<:AbstractMonomial}
return SubBasis{B}(target.monomials)
end
# To break ambiguity
function explicit_basis_covering(
::FullBasis{B},
target::SubBasis{B},
) where {B<:AbstractMonomial}
return SubBasis{B}(target.monomials)
end
function Base.adjoint(p::Polynomial{B}) where {B<:AbstractMonomialIndexed}
return Polynomial{B}(adjoint(p.monomial))
end
"""
struct Monomial <: AbstractMonomialIndexed end
Monomial basis with the monomials of the vector `monomials`.
For instance, `SubBasis{Monomial}([1, x, y, x^2, x*y, y^2])` is the monomial basis
for the subspace of quadratic polynomials in the variables `x`, `y`.
This basis is orthogonal under a scalar product defined with the complex Gaussian measure as density.
Once normalized so as to be orthonormal with this scalar product,
one get ths [`ScaledMonomial`](@ref).
"""
struct Monomial <: AbstractMonomial end
degree_one_univariate_polynomial(::Type{Monomial}, value) = value
function recurrence_eval(::Type{Monomial}, previous, value, degree)
return previous[degree] * value
end
function (::Mul{Monomial})(a::MP.AbstractMonomial, b::MP.AbstractMonomial)
return sparse_coefficients(a * b)
end
SA.coeffs(p::Polynomial{Monomial}, ::FullBasis{Monomial}) = p.monomial
function MP.polynomial_type(
::Union{SubBasis{B,M},Type{<:SubBasis{B,M}}},
::Type{T},
) where {B,M,T}
return MP.polynomial_type(FullBasis{B,M}, T)
end
function MP.polynomial_type(::Type{Polynomial{B,M}}, ::Type{T}) where {B,M,T}
return MP.polynomial_type(FullBasis{B,M}, T)
end
function MP.polynomial(f::Function, mb::SubBasis{Monomial})
return MP.polynomial(f, mb.monomials)
end
function MP.polynomial(Q::AbstractMatrix, mb::SubBasis{Monomial}, T::Type)
return MP.polynomial(Q, mb.monomials, T)
end
function MP.coefficients(
p::MP.AbstractPolynomialLike,
basis::SubBasis{Monomial},
)
return MP.coefficients(p, basis.monomials)
end
function MP.coefficients(p::MP.AbstractPolynomialLike, ::FullBasis{Monomial})
return p
end
function _assert_constant(α) end
function _assert_constant(
x::Union{Polynomial,SA.AlgebraElement,MP.AbstractPolynomialLike},
)
return error("Expected constant element, got type `$(typeof(x))`")
end
#function MA.operate!(::SA.UnsafeAddMul{<:Mul{Monomial}}, p::MP.AbstractPolynomial, args::Vararg{Any,N}) where {N}
# return MA.operate!(MA.add_mul, p, args...)
#end
#function MA.operate!(
# ::SA.UnsafeAddMul{Mul{B}},
# res::SA.AbstractCoefficients,
# v::SA.AbstractCoefficients,
# w::SA.AbstractCoefficients,
#) where {B<:MB.AbstractMonomial}
# for (kv, a) in nonzero_pairs(v)
# for (kw, b) in nonzero_pairs(w)
# SA.unsafe_push!(res, kv * kw, a * b)
# c = ms.structure(kv, kw)
# for (k, v) in nonzero_pairs(c)
# end
# end
# end
# return res
#end
#function MA.operate!(op::SA.UnsafeAddMul{Mul{B}}, a::SA.AbstractCoefficients, α, b::SA.AbstractCoefficients) where {B<:MB.AbstractMonomial}
# for
# MA.operate!(op, a, α, Polynomial{Monomial}(x.monomial * y.monomial * z.monomial))
# return a
#end
function MA.operate!(
::SA.UnsafeAddMul{typeof(*)},
a::SA.AlgebraElement{<:Algebra{<:MonomialIndexedBasis,Monomial}},
α,
x::Polynomial{Monomial},
)
_assert_constant(α)
SA.unsafe_push!(a, x, α)
return a
end
# Overload some of the `MP` interface for convenience
MP.mindegree(basis::SubBasis{Monomial}) = MP.mindegree(basis.monomials)
MP.maxdegree(basis::SubBasis) = MP.maxdegree(basis.monomials)
MP.extdegree(basis::SubBasis{Monomial}) = MP.extdegree(basis.monomials)
function MP.mindegree(basis::SubBasis{Monomial}, v)
return MP.mindegree(basis.monomials, v)
end
function MP.maxdegree(basis::SubBasis, v)
return MP.maxdegree(basis.monomials, v)
end
function MP.extdegree(basis::SubBasis{Monomial}, v)
return MP.extdegree(basis.monomials, v)
end
_promote_coef(::Type{T}, ::Type{Monomial}) where {T} = T
function MP.polynomial_type(::Type{FullBasis{B,M}}, ::Type{T}) where {T,B,M}
return MP.polynomial_type(M, _promote_coef(T, B))
end
_vec(v::Vector) = v
_vec(v::AbstractVector) = collect(v)
# Adapted from SA to incorporate `_promote_coef`
function SA.coeffs(
cfs,
source::MonomialIndexedBasis{B1},
target::MonomialIndexedBasis{B2},
) where {B1,B2}
source === target && return cfs
source == target && return cfs
if B1 === B2 && target isa FullBasis
# The defaults initialize to zero and then sums which promotes
# `JuMP.VariableRef` to `JuMP.AffExpr`
return SA.SparseCoefficients(_vec(source.monomials), _vec(cfs))
else
res = SA.zero_coeffs(
_promote_coef(_promote_coef(SA.value_type(cfs), B1), B2),
target,
)
return SA.coeffs!(res, cfs, source, target)
end
end
# FIXME this assumes that the basis is invariant under adjoint
SA.star(::SubBasis, coeffs) = SA.star.(coeffs)