A Python library for differential geometry, mainly based on SymPy, includes tensor analysis on manifolds, designed for computing fundamental geometric objects such as intrinsic and extrinsic curvatures, geodesics, covariant derivatives, divergences, gradients, Laplacians, and for verifying solutions to Einstein's equations.
In this repository you can find my Manifold and Submanifold class to handle computations within the framework of Differential Geometry. Throughout my academic education, despite attending several classes on General Relativity and Differential Geometry, I have never had the opportunity to directly compute Einstein's equations, which always felt quite strange to me. For this reason, I decided to develop my own library based on SymPy to handle tensorial calculations on manifolds. Additionally, you can find a small notebook where I explicitly verify, step by step, that constant curvature geometries satisfy Einstein's vacuum equations, with a particular focus on the hyperbolic solution.
Le geodetiche di una varietà
Dove:
-
$x^\mu$ sono coordinate locali sulla varietà. -
$\Gamma^\mu_{\nu\lambda}$ sono i simboli di Christoffel della! connessione di Levi-Civita sulla varietà. -
$\tau$ è il parametro affine (lunghezza d'arco) lungo una curva sulla varietà.
Esse sono in un certo senso intrinseche, nel senso che dipendono dalla metrica
Generalmente, le componenti di una metrica
I simboli di Christoffel si calcolano attraverso la formula