forked from Guangzidetiaoyue/CDT_ABSA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloader.py
160 lines (136 loc) · 5.6 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import json
import random
import torch
import numpy as np
class DataLoader(object):
def __init__(self, filename, batch_size, args, vocab):
self.batch_size = batch_size
self.args = args
self.vocab = vocab
with open(filename) as infile:
data = json.load(infile)
self.raw_data = data
# preprocess data
data = self.preprocess(data, vocab, args)
# labels
pol_vocab = vocab[-1]
self.labels = [pol_vocab.itos[d[-1]] for d in data]
# example num
self.num_examples = len(data)
# chunk into batches
data = [data[i:i+batch_size] for i in range(0, len(data), batch_size)]
self.data = data
print("{} batches created for {}".format(len(data), filename))
def preprocess(self, data, vocab, args):
# unpack vocab
token_vocab, post_vocab, pos_vocab, dep_vocab, pol_vocab = vocab
processed = []
for d in data:
for aspect in d['aspects']:
# word token
tok = list(d['token'])
if args.lower == True:
tok = [t.lower() for t in tok]
# aspect
asp = list(aspect['term'])
# label
label = aspect['polarity']
# pos_tag
pos = list(d['pos'])
# head
head = list(d['head'])
# deprel
deprel = list(d['deprel'])
# real length
length = len(tok)
# position
post = [i-aspect['from'] for i in range(aspect['from'])] \
+[0 for _ in range(aspect['from'], aspect['to'])] \
+[i-aspect['to']+1 for i in range(aspect['to'], length)]
# aspect mask
if len(asp) == 0:
mask = [1 for _ in range(length)] # for rest16
else:
mask = [0 for _ in range(aspect['from'])] \
+[1 for _ in range(aspect['from'], aspect['to'])] \
+[0 for _ in range(aspect['to'], length)]
# mapping token
tok = [token_vocab.stoi.get(t, token_vocab.unk_index) for t in tok]
# mapping aspect
asp = [token_vocab.stoi.get(t, token_vocab.unk_index) for t in asp]
# mapping label
label = pol_vocab.stoi.get(label)
# mapping pos
pos = [pos_vocab.stoi.get(t, pos_vocab.unk_index) for t in pos]
# mapping head to int
head = [int(x) for x in head]
assert any([x == 0 for x in head])
# mapping deprel
deprel = [dep_vocab.stoi.get(t, dep_vocab.unk_index) for t in deprel]
# mapping post
post = [post_vocab.stoi.get(t, post_vocab.unk_index) for t in post]
assert len(tok) == length \
and len(pos) == length \
and len(head) == length \
and len(deprel) == length \
and len(post) == length \
and len(mask) == length
processed += [(tok, asp, pos, head, deprel, post, mask, length, label)]
return processed
def gold(self):
return self.labels
def __len__(self):
return len(self.data)
def __getitem__(self, key):
if not isinstance(key, int):
raise TypeError
if key < 0 or key >= len(self.data):
raise IndexError
batch = self.data[key]
batch_size = len(batch)
batch = list(zip(*batch))
# sort all fields by lens for easy RNN operations
lens = [len(x) for x in batch[0]]
batch, orig_idx = sort_all(batch, lens)
# convert to tensors
# token
tok = get_long_tensor(batch[0], batch_size)
# aspect
asp = get_long_tensor(batch[1], batch_size)
# pos
pos = get_long_tensor(batch[2], batch_size)
# head
head = get_long_tensor(batch[3], batch_size)
# deprel
deprel = get_long_tensor(batch[4], batch_size)
# post
post = get_long_tensor(batch[5], batch_size)
# mask
mask = get_float_tensor(batch[6], batch_size)
# length
length = torch.LongTensor(batch[7])
# label
label = torch.LongTensor(batch[8])
return (tok, asp, pos, head, deprel, post, mask, length, label)
def __iter__(self):
for i in range(self.__len__()):
yield self.__getitem__(i)
def get_long_tensor(tokens_list, batch_size):
""" Convert list of list of tokens to a padded LongTensor. """
token_len = max(len(x) for x in tokens_list)
tokens = torch.LongTensor(batch_size, token_len).fill_(0)
for i, s in enumerate(tokens_list):
tokens[i, :len(s)] = torch.LongTensor(s)
return tokens
def get_float_tensor(tokens_list, batch_size):
""" Convert list of list of tokens to a padded FloatTensor. """
token_len = max(len(x) for x in tokens_list)
tokens = torch.FloatTensor(batch_size, token_len).fill_(0)
for i, s in enumerate(tokens_list):
tokens[i, :len(s)] = torch.FloatTensor(s)
return tokens
def sort_all(batch, lens):
""" Sort all fields by descending order of lens, and return the original indices. """
unsorted_all = [lens] + [range(len(lens))] + list(batch)
sorted_all = [list(t) for t in zip(*sorted(zip(*unsorted_all), reverse=True))]
return sorted_all[2:], sorted_all[1]