-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_v2.py
283 lines (232 loc) · 11 KB
/
model_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import numpy as np
import matplotlib.pyplot as plt
# from matplotlib.dates import DateFormatter
import matplotlib.dates as mdates
import pandas as pd
import json
# from os import listdir
import random
from scipy import stats
# globals
num_rejected_cars = 0 # Anzahl abgewiesener EVs, wenn alle Ladesäulen belegt
total_number_cars = 0 # Anzahl ankommender EVs pro Tag
num_loaded_cars = 0 # Anzahl EVs mit Ladevorgang
minute_counter = 0
poisson_list = []
settings = []
class Model:
def __init__(self, name, capacity):
self.name = name
self.capacity = float(capacity)
# self.charging_curve = pd.read_csv(f'cars/{self.name}', sep=';', decimal=',', names=["soc", "power"])
self.charging_curve = pd.read_parquet(f'cars/{self.name}.parquet')
class Car:
def __init__(self, model, total_parking_duration, soc_begin):
# self.is_EV = True
self.model = model
self.total_parking_duration = total_parking_duration
self.consumed_energy = 0
self.current_parking_duration = 0
self.soc = float(soc_begin_generate(soc_begin))
def charge(self):
idx = self.soc / 0.25
if idx < 0:
idx = 0
elif idx > 400:
idx = 400
power = float(self.model.charging_curve["power"].iloc[int(idx)])
if power >= int(settings["max_power_per_station"]):
power = int(settings["max_power_per_station"])
if self.soc >= 100:
ready_loaded = True
power = float(0)
else:
ready_loaded = False
energy = power / 60 # Energie, die in der Minute dazukommt (in Kilowatt-Minuten)
self.soc += energy / self.model.capacity * 100 # Umrechnung in % soc der Gesamtkapazität
self.consumed_energy += energy # dazugekommene Energie dazu addieren
return power, ready_loaded
def rand_new_car():
global minute_counter
global poisson_list
if len(poisson_list) == 0:
rng = np.random.default_rng()
poisson_list = rng.poisson((settings["arriving_process_poisson_lambda"] / 60), size=1441)
if settings["arriving_process"] == "random":
random_choice = random.choices([0, 1], weights=(60, settings["arriving_process_rand_factor"]), k=1)
if random_choice[0]:
return 1
else:
return 0
elif settings["arriving_process"] == "poisson":
# random_choice = np.random.poisson((settings["arriving_process_poisson_lambda"] / 60))
random_choice = poisson_list[minute_counter]
return random_choice
def soc_begin_generate(soc_begin):
if soc_begin == "equally_distributed":
soc = random.randint(*settings["soc_begin_normal_distributed_between"])
elif soc_begin == "gauss":
soc = np.random.normal(((settings["soc_gauss_bis"] - settings["soc_gauss_von"]) / 2),
settings["soc_gauss_sigma"], 1)
soc = np.clip(soc, settings["soc_gauss_von"], settings["soc_gauss_bis"])
else:
soc = 0
print("soc_begin: ", soc_begin, ",", soc)
return soc
class Parking:
def __init__(self, number_of_stations, stations_max_power):
self.number_of_stations = number_of_stations
# self.stations_max_power = stations_max_power
self.charging_cars = []
def add_car(self, car):
global num_rejected_cars
global total_number_cars
total_number_cars += 1
if len(self.charging_cars) < self.number_of_stations:
self.charging_cars.append(car)
else:
num_rejected_cars += 1
print("Alle Ladesäulen belegt. Abgewiesene EVs: ", num_rejected_cars)
def remove_ready_cars(self):
global num_loaded_cars
ready_cars = []
for car in self.charging_cars:
if car.current_parking_duration >= car.total_parking_duration:
ready_cars.append(car)
for car in ready_cars:
num_loaded_cars += 1
self.charging_cars.remove(car)
# print(f"'{car.model.name}' charged {car.consumed_energy}kWh to {car.soc}%. Anzahl geladener EVs: {num_loaded_cars}")
print(f"'{car.model.name}' charged %5.2f" % car.consumed_energy, "kWh to %5.2f" % car.soc, "% SOC")
# Example usage
def simulation(settings_selection):
global num_rejected_cars
global num_loaded_cars
global settings
global minute_counter
num_rejected_cars = 0
with open(settings_selection, "r") as f:
settings = json.load(f)
# Initialize models
model1 = Model("VW_ID3_Pure_45kWh", 58)
model2 = Model("Tesla_Model3_LR", 82.5)
model3 = Model("2021_FIAT_500e_Hatchback", 42)
model4 = Model("dummy100kW", 100)
model5 = Model("Tesla_Model_SX_LR", 100)
model6 = Model("Porsche_Taycan", 93.4)
model7 = Model("Hyundai_KONA_64kWh", 64)
model8 = Model("Hyundai_IONIQ5_LongRange", 72.6)
model9 = Model("Tesla_ModelY", 82)
model_list_all = [model1, model2, model3, model4, model5, model6, model7, model8, model9] # Liste aller möglicher Modelle
model_list = [] # Liste mit Modellen aus Settings.json
for name in (settings["list_of_cars"]):
for objekt in model_list_all:
if name == objekt.name:
model_list.append(objekt)
# Initialize parking
parking = Parking(int(settings["number_of_stations"]), int(settings["max_power_per_station"]))
df_results = pd.DataFrame() # Dataframe mit timecode und den Ergebnissen
df_results.index = pd.date_range(start='20.02.2023 00:00:00', end='21.02.2023 00:00:00', freq='Min')
if 'power_per_minute' not in df_results.columns:
df_results['power_per_minute'] = 0
if 'number_cars_charging' not in df_results.columns:
df_results['number_cars_charging'] = 0
# Simulate charging process
for row_index in df_results.iterrows():
# Generate random number of new cars
num_new_cars = rand_new_car()
for _ in range(num_new_cars):
car_model = random.choice(model_list)
# car_model = model4 # zum test nur bestimmtes Model laden
#total_parking_duration = random.randint(*settings["parking_duration"]) # Parkdauer aus Settings
total_parking_duration = int(stats.exponweib.rvs(settings["a_out"], settings["kappa_out"], \
loc=settings["loc_out"], scale=settings["lambda_out"], size=1))
while (total_parking_duration <= 0):
total_parking_duration = int(stats.exponweib.rvs(settings["a_out"], settings["kappa_out"], \
loc=settings["loc_out"], scale=settings["lambda_out"],
size=1))
new_car = Car(car_model, total_parking_duration, settings["soc_begin"])
parking.add_car(new_car)
# Charge cars and remove ready cars
for car in parking.charging_cars:
power, ready_loaded = car.charge()
# df_results['power_per_minute'] = df_results['power_per_minute'] + power
# df_results['power_per_minute'] = power
df_results.loc[row_index[0], 'power_per_minute'] += power
car.current_parking_duration += 1
# if ready_loaded:
parking.remove_ready_cars()
df_results.loc[row_index[0], 'number_cars_charging'] = parking.charging_cars.__len__()
# df_results['power_summed'] = df_results['power_per_minute'].consum()
minute_counter += 1
print("Anzahl geladener EVs: ", num_loaded_cars)
print("Abgewiesene EVs: ", num_rejected_cars)
#return df_results, (num_rejected_cars + num_loaded_cars), num_rejected_cars
return df_results
def plot(df):
# Create figure with secondary y-axis
fig1, ax1 = plt.subplots()
fig1.set_size_inches(18.5, 10.5)
color = 'tab:blue'
ax1.set_xlabel('datetime')
ax1.set_ylabel('power in kW', color=color)
ax1.plot(np.asarray(df.index), np.asarray(df['power_per_minute']), c=color, alpha=0.6)
ax1.tick_params(axis='y', labelcolor=color)
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
color = 'tab:orange'
ax2.set_ylabel('number of cars', color=color) # we already handled the x-label with ax1
ax2.plot(np.asarray(df.index), np.asarray(df['number_cars_charging']), c=color, alpha=0.6)
ax2.tick_params(axis='y', labelcolor=color)
# ax2.set_ylim(0, settings["number_of_stations"])
ax = plt.gca()
ax.xaxis.set_major_locator(mdates.HourLocator(interval=1))
ax.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M'))
plt.xticks(rotation=45)
# fig.autofmt_xdate()
# date_form = mdates.DateFormatter("%H:%M")
# ax1.xaxis.set_major_formatter(date_form)
# df_results.plot()
fig1.tight_layout() # otherwise the right y-label is slightly clipped
plt.title(label='Lastverlauf')
plt.show()
# Histogramm Lastverteilung
plt.hist(np.asarray(df['power_per_minute']), bins=40)
# plt.hist(np.asarray(df['number_cars_charging']), bins=[0, 1, 2, 3, 4])
plt.ylabel('Minuten')
plt.xlabel('Load in kW')
plt.title(label='Histogramm Load')
plt.show()
# CFD Plot
"""plt.hist(np.asarray(df['power_per_minute']), cumulative=True, label='CDF',
histtype='step', alpha=0.8, color='k')
plt.show()"""
def auswertung(df):
max_values = df.power_per_minute.max()
print("Maximale Last: ", max_values, "kWh")
abs_over_60 = (df.power_per_minute > 0.6 * max_values).sum()
percent_over_60 = (abs_over_60 / len(df.power_per_minute)) * 100
abs_over_70 = (df.power_per_minute > 0.7 * max_values).sum()
percent_over_70 = (abs_over_70 / len(df.power_per_minute)) * 100
abs_over_80 = (df.power_per_minute > 0.8 * max_values).sum()
percent_over_80 = (abs_over_80 / len(df.power_per_minute)) * 100
abs_over_90 = (df.power_per_minute > 0.9 * max_values).sum()
percent_over_90 = (abs_over_90 / len(df.power_per_minute)) * 100
abs_over_95 = (df.power_per_minute > 0.95 * max_values).sum()
percent_over_95 = (abs_over_95 / len(df.power_per_minute)) * 100
print("Minuten über 60%% der maximalen Last (%5.2f" % (0.60 * max_values), "kWh):", abs_over_60, "Entsprechen",
"%5.2f" % percent_over_60, "%")
print("Minuten über 70%% der maximalen Last (%5.2f" % (0.70 * max_values), "kWh):", abs_over_70, "Entsprechen",
"%5.2f" % percent_over_70, "%")
print("Minuten über 80%% der maximalen Last (%5.2f" % (0.80 * max_values), "kWh):", abs_over_80, "Entsprechen",
"%5.2f" % percent_over_80, "%")
print("Minuten über 90%% der maximalen Last (%5.2f" % (0.90 * max_values), "kWh):", abs_over_90, "Entsprechen",
"%5.2f" % percent_over_90, "%")
print("Minuten über 95%% der maximalen Last (%5.2f" % (0.95 * max_values), "kWh):", abs_over_95, "Entsprechen",
"%5.2f" % percent_over_95, "%")
return
def main():
# df_results_returned = simulation("settings_model_charging-time.json")
df_results_returned = simulation("settings_soc_begin.json")
plot(df_results_returned)
if __name__ == "__main__":
main()