-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmod_initial.f90
169 lines (138 loc) · 3.65 KB
/
mod_initial.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
MODULE MOD_INITIAL
USE MOD_INPUT
IMPLICIT NONE
PRIVATE
PUBLIC :: EN1 ! Circum number density
PUBLIC :: DC
PUBLIC :: eq_gamma_3
PUBLIC :: zbrent
CONTAINS
!***********************************************************************
! Function EN1: The number density ISM (k=0) or Wind (k=2)
! INPUT: r, radius
! OUTPUT: n
!***********************************************************************
FUNCTION EN1(R)
real*8 :: en1, r
if( kk==0 )then
en1 = n0
else
en1 = (3.D35)*Aast/r**kk
endif
RETURN
END FUNCTION EN1
!***********************************************************************
! Function Dc: luminosity distance Dc
! INPUT: x, redshift
! OUTPUT: Dc
!***********************************************************************
function Dc( x, params ) bind(c)
use, intrinsic :: iso_c_binding
implicit none
real( kind = c_double ) :: Dc
real( kind = c_double ), value :: x
type( c_ptr ), value :: params
Dc = 10.*c/H0/sqrt(OmegaM*(1+x)**3+OmegaL)
end function Dc
!***********************************************************************
! Function EQ_GAMMA_3: initial gamma3
! INPUT:
! - gam3, gam4
! - n4/n1
! OUTPUT:
! - gamm3
! REMINDER:
! - jump condition density relation func(gam4, gam4) = n3/n4
! - I want the MHD solution, so I multiply (1+sigma)
!***********************************************************************
FUNCTION eq_gamma_3(gamma_3)
implicit none
DOUBLE PRECISION :: eq_gamma_3
DOUBLE PRECISION :: gamma_3,gamma_34
gamma_34 = gamma_3*gam4 &
-dsqrt((gamma_3*gamma_3-1.D0)*(gam4*gam4-1.D0))
eq_gamma_3 = (gamma_34-1.D0)*(4.D0*gamma_34+3.D0)*f*(1.D0+sigma) &
-(gamma_3-1.D0)*(4.D0*gamma_3+3.D0)
END FUNCTION eq_gamma_3
!***********************************************************************
! Function ZBRENT: rooter algorithm
! INPUT:
! - func : function
! - x1, x2 : possible range for the root
! - tol : toloration precision
! OUTPUT:
! - root of func
!***********************************************************************
FUNCTION zbrent(func,x1,x2,tol)
EXTERNAL func
DOUBLE PRECISION :: zbrent,tol,x1,x2,func,EPS
DOUBLE PRECISION :: a,b,c,c1,c2,d,e,fa,fb,fc,p,q,r,s,tol1,xm
INTEGER*8 :: ITMAX, iter
PARAMETER (ITMAX=1000,EPS=3.D-12)
a=x1
b=x2
fa=func(a)
fb=func(b)
if((fa.gt.0.d0.and.fb.gt.0.d0).or.(fa.lt.0.d0.and.fb.lt.0.d0)) &
pause 'root must be bracketed for zbrent'
c=b
fc=fb
do iter=1,ITMAX
if((fb.gt.0.d0.and.fc.gt.0.d0).or.(fb.lt.0.d0.and.fc.lt.0.d0))then
c=a
fc=fa
d=b-a
e=d
endif
if(abs(fc).lt.abs(fb)) then
a=b
b=c
c=a
fa=fb
fb=fc
fc=fa
endif
tol1=2.d0*EPS*abs(b)+0.5d0*tol
xm=0.5d0*(c-b)
if(abs(xm).le.tol1 .or. fb.eq.0.d0)then
zbrent=b
return
endif
if(abs(e).ge.tol1 .and. abs(fa).gt.abs(fb)) then
s=fb/fa
if(a.eq.c) then
p=2.d0*xm*s
q=1.d0-s
else
q=fa/fc
r=fb/fc
p=s*(2.d0*xm*q*(q-r)-(b-a)*(r-1.d0))
q=(q-1.d0)*(r-1.d0)*(s-1.d0)
endif
if(p.gt.0.d0) q=-q
p=abs(p)
if(2.d0*p .lt. min(3.d0*xm*q-abs(tol1*q),abs(e*q))) then
e=d
d=p/q
else
d=xm
e=d
endif
else
d=xm
e=d
endif
a=b
fa=fb
if(abs(d) .gt. tol1) then
b=b+d
else
b=b+sign(tol1,xm)
endif
fb=func(b)
end do
pause 'zbrent exceeding maximum iterations'
zbrent=b
return
END FUNCTION zbrent
END MODULE MOD_INITIAL