-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
152 lines (130 loc) · 6.41 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Script to evaluate MHC encoding for EL/BA evaluation
# Johan Ziruo Ye
# Spring 2020
import os
from utils import *
from model import *
import time
import torch.optim as optim
from tqdm import tqdm
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--data', type=str, default="BA")
parser.add_argument('--resnet_output_file', type=str, default='model_output_resnet.txt')
parser.add_argument('--total_output_file', type=str, default='model_output_total.txt')
parser.add_argument('--n_epochs', type=int, default=200)
parser.add_argument('--batch_size', type=int, default=512)
parser.add_argument('--lr', type=float, default=2e-4)
parser.add_argument('--patience', type=int, default=20)
parser.add_argument('--lstm', type=int, default=1)
parser.add_argument('--raw', type=bool, default=False)
parser.add_argument('--gauss', action='store_true')
parser.add_argument('--block_type', type=str, default='cabd')
parser.add_argument('--n_reslayers', type=int, default=5)
parser.add_argument('--lstm_nhidden', type=int, default=64)
parser.add_argument('--lstm_nlayers', type=int, default=2)
parser.add_argument('--rezero', type=bool, default=False)
parser.add_argument('--full_lstm', type=bool, default=False)
parser.add_argument('--vae', type=bool, default=False)
args = parser.parse_args()
# lazy workaround
args.lstm = True if args.lstm == 1 else False
BA_EL = args.data # Expects BA or EL
# Data stuff
data_path = os.getcwd() + '/MHC_I/' + BA_EL.lower() + "_data/"
MHC = pd.read_csv(os.getcwd() + '/MHC_I/' + 'MHC_pseudo.dat', header=None, sep='\s+')
MHC_len = MHC[1].map(len).max()
MHC_dict = MHC.set_index(0).to_dict()[1]
All_data = {0, 1, 2, 3, 4}
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(args.seed)
# Hyperparams:
torch.backends.cudnn.benchmark= True
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
Peptide_len = 15
n_epoch = args.n_epochs
batch_size = args.batch_size
lr = args.lr
patience = args.patience
train_epoch_loss, val_epoch_loss, test_epoch_loss = [], [], []
k = 0
exp_path, save_dir, figure_dir = generate_experiment_folders('./experiments', args)
file1 = save_dir + args.resnet_output_file
file2 = save_dir + args.total_output_file
outfile_resnet = open(file1, 'w')
outfile_resnet.write('split\tMHC\tPeptide\ty\ty_pred\tstd\n')
outfile_total = open(file2, 'w')
outfile_total.write('split\tMHC\tPeptide\ty\ty_pred\n')
def criterion(y, mu, std=None, normal_dist=True):
if normal_dist:
loss = -torch.distributions.Normal(loc=mu, scale=std).log_prob(y)
else:
loss = nn.functional.mse_loss(mu, y)
return loss.mean()
for test_set in range(5):
test_loader = torch.utils.data.DataLoader(MHC_dataset(data_path, test_set, BA_EL, MHC_dict, MHC_len),
batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True)
for validation_set in range(5):
t = time.process_time()
if test_set == validation_set:
continue
k += 1
best_val_MSE = np.inf
# data loading: [N, Concat_length, Amino acids]
train_set = list(All_data - set([test_set, validation_set]))
train_loader = torch.utils.data.DataLoader(MHC_dataset(data_path, train_set, BA_EL, MHC_dict, MHC_len),
batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True)
val_loader = torch.utils.data.DataLoader(MHC_dataset(data_path, validation_set, BA_EL, MHC_dict, MHC_len),
batch_size=batch_size, shuffle=True, num_workers=8, pin_memory=True)
if args.vae:
VAE = VariationalAutoencoder().to(device)
VAE_optimizer = optim.Adam(VAE.parameters(), lr=lr/10)
model, optimizer = VAE.train_model(model=VAE,
train_loader=train_loader,
validation_loader=val_loader,
optimizer=VAE_optimizer,
save_dir=save_dir,
crossvalsplit=k,
n_epoch=10)
net = ResidualNetwork(block_type=args.block_type, n_layers=args.n_reslayers, rezero=args.rezero).to(device)
optimizer = optim.Adam(net.parameters(), lr=lr)
net, optimizer = train_epochs(args=args,
model=net,
loss_function=criterion,
train_loader=train_loader,
validation_loader=val_loader,
optimizer=optimizer,
save_dir=save_dir,
model_name='resnet',
crossvalsplit=k)
performance_testing_print(
data_path, test_set, BA_EL, MHC_dict, batch_size, MHC_len, Peptide_len, net, k, outfile_resnet)
if args.lstm:
# LSTM WITH FROZEN RESNET
best_val_MSE = np.inf
if args.fucking_raw:
net2 = Resnet_Blosum_direct(block_type=args.block_type).to(device)
else:
net2 = Frozen_resnet(lstm_hidden=args.lstm_nhidden, lstm_layers=args.lstm_nlayers,
full_lstm=args.full_lstm).to(device)
optimizer2 = optim.Adam(net2.parameters(), lr=lr)
net2, optimizer2 = train_epochs(args=args,
model=net2,
loss_function=criterion,
train_loader=train_loader,
validation_loader=val_loader,
optimizer=optimizer,
save_dir=save_dir,
model_name='total',
crossvalsplit=k,
trained_model=net
)
performance_testing_print(
data_path, test_set, BA_EL, MHC_dict,
batch_size, MHC_len, Peptide_len, net, k, outfile_total,
net2=net2, resnet=True)
outfile_resnet.close()
outfile_total.close()