We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
老师,我现在有个问题:我想要提取卷积神经网络的某一层的特征。以inceptionV3为例,假设输入数据是2992993总共有2000张输入到网络里面去了。假设我要提取pool3的特征是2048维,并将其命名为features。.shape看它的形状的时候,它是一个形状(2000,2048)的矩阵。我想下这个2000行,2048列的矩阵中。这第n行代表的是第n个图的特征向量吗?谢谢老师
The text was updated successfully, but these errors were encountered:
没错,(2000, 2048) 代表 (2000个样本,2048维特征)
Sorry, something went wrong.
老师您好,我还有个问题,我给这个2000张图片编号是1-2000,是不是编号为1的图片,对应第1行(依次类推编号为n的图片,对应第n行特征)?谢谢老师
序号从0开始,所以是0~1999,第一张图片对应的序号是0
序号从0开始,所以是0〜1999年,第一张图片对应的序号是0
非常感谢老师的回答,谢谢您。
No branches or pull requests
老师,我现在有个问题:我想要提取卷积神经网络的某一层的特征。以inceptionV3为例,假设输入数据是2992993总共有2000张输入到网络里面去了。假设我要提取pool3的特征是2048维,并将其命名为features。.shape看它的形状的时候,它是一个形状(2000,2048)的矩阵。我想下这个2000行,2048列的矩阵中。这第n行代表的是第n个图的特征向量吗?谢谢老师
The text was updated successfully, but these errors were encountered: