Learning to Rearrange Voxels in Binary Segmentation Masks for Smooth Manifold Triangulation [pdf]
Dataset: AutoImplant 2021 Challenge Task 3 Dataset
denoise.py : denoise the implant obtained via subtraction based on CCA and morphological openning. Kernel size needs to be adjusted for each case (larger kernel removes more voxels)
def morph(data):
kernel = np.ones((9,9),np.uint8)
mo=cv2.morphologyEx(data.astype('uint8'), cv2.MORPH_OPEN, kernel)
return mo
loader.py : Data loader for patch-wise shape completion and patch-wise voxel rearrangement. During testing, using the following function to crop patches (128x128x64) from a skull.
def make_random_test_patch(data):
data_list=[]
a,b,c=data.shape
zz=(c//64)
for x in range(4):
for y in range(4):
for z in range(zz):
temp_data=np.expand_dims(np.expand_dims(data[x*128:(x+1)*128,y*128:(y+1)*128,z*64:(z+1)*64],axis=0),axis=4)
data_list.append(temp_data)
for x in range(4):
for y in range(4):
temp_data=np.expand_dims(np.expand_dims(data[x*128:(x+1)*128,y*128:(y+1)*128,c-64:c],axis=0),axis=4)
data_list.append(temp_data)
return np.array(data_list)
skull_completion.py : for skull shape completion on downsampled skulls, patch-wise shape completion and patch-wise voxel rearrangement, the same autoencoder network is used. For testing of the two patch-based methods, the output patches are sequentially combined as follows to form a final complete skull (for each skull, the number of slices, i.e., Z is different).
reconstructed=np.zeros(shape=(512,512,Z))
zl=num_Z//64
patch_idx=0
for x in range(4):
for y in range(4):
for z in range(zl):
test_output = self.sess.run(self.task0_label, feed_dict={self.input_I: test_input[patch_idx]})
reconstructed[x*128:(x+1)*128,y*128:(y+1)*128,z*64:(z+1)*64]=test_output[0,:,:,:]
patch_idx=patch_idx+1
for x in range(4):
for y in range(4):
test_output = self.sess.run(self.task0_label, feed_dict={self.input_I: test_input[patch_idx]})
reconstructed[x*128:(x+1)*128,y*128:(y+1)*128,zz-64:zz]=test_output[0,:,:,:]
patch_idx=patch_idx+1
If you find our repository useful or use the codes in your research, please use the following bibtex entry for reference:
@article{li2021learning,
title={Learning to Rearrange Voxels in Binary Segmentation Masks for Smooth Manifold Triangulation},
author={Li, Jianning and Pepe, Antonio and Gsaxner, Christina and Jin, Yuan and Egger, Jan},
journal={arXiv preprint arXiv:2108.05269},
year={2021}
}