-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
executable file
·165 lines (139 loc) · 5.74 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import sys
import numpy as np # linear algebra
from scipy.stats import randint
from scipy.stats import stats
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv), data manipulation as in SQL
import tensorflow as tf
import random
import os
import argparse
from utils import load_data, print_args
parser = argparse.ArgumentParser()
parser.add_argument("--num_compressed", default='100', type=int)
parser.add_argument("--num_trial", default='0', type=int)
parser.add_argument("--window_size", default='10', type=int)
parser.add_argument("--batch_size", default='20', type=int)
parser.add_argument("--epochs", default='1000', type=int)
parser.add_argument("--dataset", default='prec', type=str)
args = parser.parse_args()
'''
copy arguments from argparse
'''
num_compressed = args.num_compressed
num_trial = args.num_trial
window_size = args.window_size
batch_size = args.batch_size
epochs = args.epochs
dataset = args.dataset
state_size = num_compressed
'''
load data
'''
original_signal, sensors, n_rec, p_rec = load_data(dataset, num_compressed)
'''
create result folder
'''
path = "./results/"+dataset+"_"+str(num_compressed) + "_" + str(num_trial)
if not os.path.isdir(path+"/"):
os.mkdir(path+"/")
'''
pre-processing data
'''
compressed_signal = original_signal[:,sensors]
if dataset =='prec':
train_end = 700
n_neurons_1 = 512
n_neurons_2 = 1024
elif dataset =='sst':
train_end = int(52*16)
n_neurons_1 = 1024
n_neurons_2 = 4096
data_train_input = compressed_signal[: train_end, :]
data_train_output = original_signal[: train_end, :]
data_test_input = compressed_signal[train_end:, :]
data_test_output = original_signal[train_end:, :]
train_X, train_y = data_train_input, data_train_output
test_X, test_y = data_test_input, data_test_output
print(train_X.shape, train_y.shape, test_X.shape, test_y.shape)
input_state_size = np.size(compressed_signal,1)
output_size = p_rec
# reshape trainging/testing data according to sliding window
def window_stack(a, window_size=10):
return np.array([a[i:i + window_size][::1] for i in range(0, len(a) - window_size+1)])
train_X_window = window_stack(train_X, window_size)
train_X_window = train_X_window[:,:,:]
train_X = train_X[window_size-1:,:]
print(train_X_window.shape)
train_y_window = train_y[window_size-1:,:]
print(train_y_window.shape)
test_X_window = window_stack(test_X, window_size)
test_X_window = test_X_window[:,:,:]
test_X = test_X[window_size-1:,:]
print(test_X_window.shape)
test_y_window = test_y[window_size-1:,:]
print(test_y_window.shape)
'''
constructing model
'''
# Placeholder
X = tf.placeholder(dtype=tf.float32, shape=[None, window_size, input_state_size])
X_current = tf.placeholder(dtype=tf.float32, shape=[None, input_state_size])
Y = tf.placeholder(dtype=tf.float32, shape=[None, output_size])
# Initializers
sigma = 1
weight_initializer = tf.variance_scaling_initializer(mode="fan_avg", distribution="uniform", scale=sigma)
bias_initializer = tf.zeros_initializer()
W_hidden_1 = tf.Variable(weight_initializer([input_state_size+state_size, n_neurons_1]))
bias_hidden_1 = tf.Variable(bias_initializer([n_neurons_1]))
W_hidden_2 = tf.Variable(weight_initializer([n_neurons_1, n_neurons_2]))
bias_hidden_2 = tf.Variable(bias_initializer([n_neurons_2]))
# Output weights
W_out = tf.Variable(weight_initializer([n_neurons_2, p_rec]))
bias_out = tf.Variable(bias_initializer([p_rec]))
# Forward pass
cell = tf.nn.rnn_cell.LSTMCell(state_size, state_is_tuple=True)
outputs, state = tf.nn.dynamic_rnn(cell, X, dtype=tf.float32)
# state.h.shape: (None, state_size)
lstm_cell_out = tf.concat(axis=1,values=[state.h, X_current])
hidden_1 = tf.nn.relu(tf.add(tf.matmul(lstm_cell_out, W_hidden_1), bias_hidden_1))
hidden_2 = tf.nn.relu(tf.add(tf.matmul(hidden_1, W_hidden_2), bias_hidden_2))
# model output
out = tf.add(tf.matmul(hidden_2, W_out), bias_out)
# Cost function
mse = tf.reduce_mean(tf.squared_difference(out, Y)) #mse, element wise squred difference
_,variance = tf.nn.moments(tf.reduce_mean(tf.squared_difference(out, Y), axis = 1), axes = [0])
''' Optimizer'''
opt = tf.train.GradientDescentOptimizer(0.5).minimize(mse)
init_op = tf.global_variables_initializer()
# Run
mse_train = []
mse_test = []
variance_test = []
original_index = [o for o in range(len(train_y_window))]
shuffle_indices_for_training_data = np.array(original_index)
with tf.Session() as sess:
sess.run(init_op)
for e in range(epochs):
print ('Epoch ', e, ' /', epochs)
for i in range(0, len(train_y_window) // batch_size):
start = i * batch_size
batch_x = train_X_window[start:start + batch_size,:,:]
batch_y = train_y_window[start:start + batch_size,:]
batch_x_current = train_X[start:start + batch_size,:]
# Run optimizer with batch
sess.run(opt, feed_dict={X: batch_x, Y: batch_y, X_current: batch_x_current})
# Show progress
# if np.mod(i, 50) == 0:
if np.mod(i, 50) == 0:
# MSE train and test
mse_train.append(sess.run(mse, feed_dict={X: train_X_window, Y: train_y_window, X_current: train_X}))
mse_test.append(sess.run(mse, feed_dict={X: test_X_window, Y: test_y_window, X_current: test_X}))
variance_test.append(sess.run(variance, feed_dict={X: test_X_window, Y: test_y_window, X_current: test_X}))
print('MSE Train: ', mse_train[-1], '; MSE Test: ', mse_test[-1],'; var: ', variance_test[-1])
pred = sess.run(out, feed_dict={X: test_X_window, Y: test_y_window, X_current: test_X})
# np.savetxt(path+"/random_bench_sensors.csv", sensors, delimiter=",")
np.savetxt(path+"/mse_test.csv", mse_test, delimiter=",")
np.savetxt(path+"/mse_train.csv", mse_train, delimiter=",")
np.savetxt(path+"/mse_var.csv", variance_test, delimiter=",")
if num_compressed ==100 and num_trial == 1:
np.savetxt(path+"/pred.csv", pred, delimiter=",")