forked from taroz/gsdc2023
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfgo_gnss.m
263 lines (228 loc) · 8.78 KB
/
fgo_gnss.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
function optstatus = fgo_gnss(datapath, setting, initflag)
%% Factor graph optimization using GNSS only
% Author: Taro Suzuki
arguments
datapath string % Dataset path
setting table % Setting data from setting_train.csv or setting_test.csv
initflag = false % Initialization flag, default = false
end
%% Path
addpath ./functions/
addpath ./gtsam_gnss/
addpath /usr/local/gtsam_toolbox/
%% Load data
course = setting.Course; phone = setting.Phone;
fprintf('Course: %s, Phone: %s\n', course, phone);
% Load preprocessed smartphone data
load(datapath+course+"/"+phone+"/"+"phone_data.mat");
%% Setting
is = setting.IdxStart; % Start index for optimization
ie = setting.IdxEnd; % End index for optimization
n = obs.n; % Number of total epochs
nsat = obs.nsat; % Number of satellites
FTYPE = ["L1","L5"]; % Frequency type
prm = parameters(setting, initflag); % Processing parameter
%% Initial position/velocity/clk/dclk/
if initflag
% Single point positioning results
posini = posbl.copy();
velini = posbl.gradient(obs.dt);
clk = [obs.clk zeros(n,6)];
dclk = obs.dclk;
else
% Previous estimation
load(datapath+course+"/"+phone+"/"+"result_gnss.mat");
posini = posest.copy();
velini = velest.copy();
clk = clkest;
dclk = dclkest;
end
%% Compute residuals
% Exclude outliers
obsr = exobs(obs, prm);
% Observation residuals
satr = gt.Gsat(obsr, nav);
satr.setRcvPosVel(posini, velini);
obsr = obsr.residuals(satr);
% Exclude outliers from residuals
obsr = exobs_residuals(obsr, satr, clk(:,1), dclk, prm);
obsr = obsr.residuals(satr);
% ECEF to ENU
for j=1:nsat
exyz = [-satr.ex(:,j) -satr.ey(:,j) -satr.ez(:,j)]; % Line-of-sight vector in ECEF
eenu = rtklib.ecef2enu(exyz, posini.orgllh); % Line-of-sight vector in ENU
ee(:,j) = eenu(:,1);
en(:,j) = eenu(:,2);
eu(:,j) = eenu(:,3);
end
%% Pseudorange compensation using base observation
for f=FTYPE
if ~isempty(obsr.(f))
% Pseudorange correction
pc = correct_pseudorange(datapath, obsr, obsb, nav, f, prm);
obsr.(f).resPc = obsr.(f).resPc-pc;
end
end
%% Observation error model
obserr = obserrmodel(obsr,satr,prm);
%% Parameters for graph optimization
noise_sigmas = @gtsam.noiseModel.Diagonal.Sigmas;
noise_robust = @gtsam.noiseModel.Robust.Create;
sym = @gtsam.symbol;
% Initial state
x_ini = posini.enu'; % x (position) in ENU
v_ini = velini.enu'; % v (velocity) in ENU
c_ini = clk'; % c (clock)
d_ini = dclk'; % d (clock drift)
% Motion factor
sigma_motion = prm.sigma_motion*ones(3,1);
noise_motion = noise_sigmas(sigma_motion);
% Clock factor
noise_clk = noise_sigmas(prm.sigma_motion_clk*ones(7,1));
noise_clkjump = noise_sigmas([Inf; prm.sigma_motion_clk*ones(6,1)]);
% Between clock factor
sigma_between_clk = [prm.sigma_between_clk_gps; prm.sigma_between_clk_others*ones(6,1)];
noise_between_clk = noise_sigmas(sigma_between_clk);
sigma_between_clkjump = [Inf; prm.sigma_between_clk_others*ones(6,1)];
noise_between_clkjump = noise_sigmas(sigma_between_clkjump);
%% Graph Construction
% Create a factor graph container
graph = gtsam.NonlinearFactorGraph;
% Initial factor/state
initials = gtsam.Values;
for i=is:ie
% Initial values
initials.insert(sym('x',i), x_ini(:,i));
initials.insert(sym('v',i), v_ini(:,i));
initials.insert(sym('c',i), c_ini(:,i));
initials.insert(sym('d',i), d_ini(:,i));
% Initial factor
graph.add(gtsam.PriorFactorVector(sym('x',i), x_ini(:,i), noise_sigmas(Inf*ones(3,1))));
graph.add(gtsam.PriorFactorVector(sym('v',i), v_ini(:,i), noise_sigmas(Inf*ones(3,1))));
graph.add(gtsam.PriorFactorVector(sym('c',i), c_ini(:,i), noise_sigmas(Inf*ones(7,1))));
graph.add(gtsam.PriorFactorVector(sym('d',i), d_ini(:,i), noise_sigmas(Inf*ones(1,1))));
end
% Pseudorange/Doppler factor
for i=progress(is:ie)
keyX = sym('x',i);
keyV = sym('v',i);
keyC = sym('c',i);
keyD = sym('d',i);
orgx = posini.enu(i,:)';
orgv = velini.enu(i,:)';
for j=1:nsat
losvec = [ee(i,j) en(i,j) eu(i,j)]';
for f=FTYPE
if ~isempty(obsr.(f))
sigtype = sysfreq2sigtype(obsr.sys,f);
% Pseudorange factor
if ~isnan(obsr.(f).resPc(i,j))
noise = noise_sigmas(obserr.(f).P(i,j));
noise_rubust = noise_robust(prm.P_kernel, noise);
graph.add(gtsam_gnss.PseudorangeFactorWithClock(keyX, keyC, losvec, obsr.(f).resPc(i,j), sigtype(j), orgx, noise_rubust));
end
% Doppler factor
if ~isnan(obsr.(f).resD(i,j))
noise = noise_sigmas(obserr.(f).D(i,j));
noise_rubust = noise_robust(prm.D_kernel, noise);
graph.add(gtsam_gnss.DopplerFactorWithClockV(keyV, keyD, losvec, obsr.(f).resD(i,j), orgv, noise_rubust));
end
end
end
end
end
% Motion/Clock/IMU/TDCP factor
for i=progress(is:ie-1)
keyX1 = sym('x',i); keyX2 = sym('x',i+1);
keyV1 = sym('v',i); keyV2 = sym('v',i+1);
keyC1 = sym('c',i); keyC2 = sym('c',i+1);
keyD1 = sym('d',i); keyD2 = sym('d',i+1);
orgx1 = posini.enu(i,:)';
orgx2 = posini.enu(i+1,:)';
% Time difference
dtgps = (obs.utcms(i+1)-obs.utcms(i))/1000;
if dtgps<prm.time_diff_th
% Motion factor
graph.add(gtsam_gnss.MotionFactor(keyX1, keyX2, keyV1, keyV2, dtgps, noise_motion));
% Clock factor
if ~ismember(phone,["sm-a205u","sm-a505u","samsunga325g"])
if obs.clkjump(i+1)
graph.add(gtsam_gnss.ClockFactor(keyC1, keyC2, keyD1, keyD2, dtgps, noise_clkjump));
else
graph.add(gtsam_gnss.ClockFactor(keyC1, keyC2, keyD1, keyD2, dtgps, noise_clk));
end
% Between clock factor
if obs.clkjump(i+1)
graph.add(gtsam.BetweenFactorVector(keyC1, keyC2, zeros(7,1), noise_between_clkjump));
else
graph.add(gtsam.BetweenFactorVector(keyC1, keyC2, zeros(7,1), noise_between_clk));
end
end
end
if ~ismember(setting.Phone,["sm-a325f","samsunga32"])
for j=1:nsat
losvec = [ee(i,j),en(i,j),eu(i,j)]';
for f=FTYPE
if ~isempty(obsr.(f))
sigtype = sysfreq2sigtype(obsr.sys,f);
% TDCP factor
if ~isnan(obsr.(f).resL(i,j)) && ~isnan(obsr.(f).resL(i+1,j)) && ~obs.clkjump(i+1)
noise = noise_sigmas(obserr.(f).L(i,j));
noise_rubust = noise_robust(prm.L_kernel, noise);
if ismember(phone,["sm-a205u","sm-a217m","sm-a505g","sm-a600t","sm-a505u"])
graph.add(gtsam_gnss.TDCPFactorWithDClock(keyX1, keyX2, keyD1, keyD2, losvec, obsr.(f).resL(i,j)-prm.Loffset, obsr.(f).resL(i+1,j), orgx1, orgx2, noise_rubust));
elseif ismember(phone,"samsunga325g")
graph.add(gtsam_gnss.TDCPFactorWithDClock(keyX1, keyX2, keyD1, keyD2, losvec, obsr.(f).resL(i,j), obsr.(f).resL(i+1,j), orgx1, orgx2, noise_rubust));
else
graph.add(gtsam_gnss.TDCPFactorWithClock(keyX1, keyX2, keyC1, keyC2, losvec, obsr.(f).resL(i,j), obsr.(f).resL(i+1,j), sigtype(j), orgx1, orgx2, noise_rubust));
end
end
end
end
end
end
end
%% Optimization
optparameters = gtsam.LevenbergMarquardtParams;
optparameters.setVerbosity('TERMINATION');
optparameters.setMaxIterations(1000);
optimizer = gtsam.LevenbergMarquardtOptimizer(graph, initials, optparameters);
% Optimize!
disp('optimization... ');
fprintf('Initial Error: %.2f\n',optimizer.error);
tic;
results = optimizer.optimize();
fprintf('Error: %.2f Iter: %d\n',optimizer.error,optimizer.iterations);
toc;
optstatus.OptTime = toc;
optstatus.OptIter = optimizer.iterations;
optstatus.OptError = optimizer.error;
% Retrieving the estimated value
xest = NaN(n,3);
vest = NaN(n,3);
clkest = NaN(n,7);
dclkest = NaN(n,1);
for i=is:ie
xest(i,:) = results.atVector(sym('x',i))';
vest(i,:) = results.atVector(sym('v',i))';
clkest(i,:) = results.atVector(sym('c',i))';
dclkest(i,:) = results.atVector(sym('d',i))';
end
% Estimated position/velocity
posest = gt.Gpos(xest,'enu',posini.orgllh,'llh');
velest = gt.Gvel(vest,'enu',posini.orgllh,'llh');
%% Add position offset
rpy = vel2rpy(velest.enu, prm);
posest = add_position_offset(posest, rpy, phone);
%% Plot results
plot_eststate(clkest);
% Plot score
if contains(datapath,'train')
load(datapath+course+"/"+phone+"/"+"gt.mat");
optstatus.Score = plot_score(posest, posbl, posgt);
else
optstatus.Score = NaN;
end
%% Save results
fname = datapath+course+"/"+phone+"/"+"result_gnss.mat";
save(fname,"posest","clkest","velest","dclkest");