-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapply_filters.py
248 lines (180 loc) · 8.31 KB
/
apply_filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import numpy as np
import cv2
import os
from random import shuffle
from scipy.misc import imread
from PIL import Image
from skimage.restoration import unsupervised_wiener, denoise_wavelet, \
denoise_tv_chambolle, denoise_nl_means, denoise_tv_bregman
from scipy.signal import wiener
from skimage.measure import compare_ssim as ssim
from denoiser import Denoiser
#img1 = imread(r'Z:\Jeffrey-Ede\models\denoiser-multi-gpu-10\output-1.tif', mode='F')
#img2 = imread(r'Z:\Jeffrey-Ede\models\denoiser-multi-gpu-10\truth-1.tif', mode='F')
#print(ssim(img1, img2, data_range=img2.max()-img2.min()))
#print(np.mean((img1-img2)**2))
import time
in_dir = "E:/stills_hq-mini/"
save_dir = "E:/stills_hq-mini/denoiser-13-nn-extra-stats/"
subsets = ["train", "val", "test"]
def scale0to1(img):
"""Rescale image between 0 and 1"""
min = np.min(img)
max = np.max(img)
if min == max:
img.fill(0.5)
else:
img = (img-min) / (max-min)
return img.astype(np.float32)
def disp(img):
cv2.namedWindow('CV_Window', cv2.WINDOW_NORMAL)
cv2.imshow('CV_Window', scale0to1(img))
cv2.waitKey(0)
return
def radial_profile(data, center):
y, x = np.indices((data.shape))
r = np.sqrt((x - center[0])**2 + (y - center[1])**2)
r = r.astype(np.int)
tbin = np.bincount(r.ravel(), data.ravel())
nr = np.bincount(r.ravel())
radialprofile = tbin / nr
return radialprofile
def gen_lq(img, scale):
'''Generate low quality image'''
#Ensure that the seed is random
np.random.seed(int(np.random.rand()*(2**32-1)))
#Adjust the image scale so that the image has the
# correct average counts
lq = np.random.poisson( img * scale )
return scale0to1(lq)
def metric_no_metric(input, truth):
input = input.astype(np.float32)
mse = np.sum((input-truth)**2) / input.size
struct_sim = ssim(input, truth, data_range=input.max()-input.min())
return mse, struct_sim
def metric_gaussian(input, truth):
filtered = cv2.GaussianBlur(input, (3,3), 0)
filtered = filtered.astype(np.float32)
mse = np.sum((filtered-truth)**2) / input.size
struct_sim = ssim(filtered, truth, data_range=filtered.max()-filtered.min())
return mse, struct_sim
def metric_bilateral(input, truth):
filtered = cv2.bilateralFilter(input, 9, 75, 75)
filtered = filtered.astype(np.float32)
mse = np.sum((filtered-truth)**2) / input.size
struct_sim = ssim(filtered, truth, data_range=filtered.max()-filtered.min())
return mse, struct_sim
def metric_median(input, truth):
filtered = cv2.medianBlur(input, 3)
filtered = filtered.astype(np.float32)
mse = np.sum((filtered-truth)**2) / input.size
struct_sim = ssim(filtered, truth, data_range=filtered.max()-filtered.min())
return mse, struct_sim
def metric_wiener(input, truth):
psf = np.ones((5,5)) / 5**2
filtered = wiener(input)
filtered = filtered.astype(np.float32)
mse = np.sum((filtered-truth)**2) / input.size
struct_sim = ssim(filtered, truth, data_range=filtered.max()-filtered.min())
return mse, struct_sim
def metric_wavelet(input, truth):
filtered = denoise_wavelet(input)
filtered = filtered.astype(np.float32)
mse = np.sum((filtered-truth)**2) / input.size
struct_sim = ssim(filtered, truth, data_range=filtered.max()-filtered.min())
return mse, struct_sim
def metric_denoise_tv_chambolle(input, truth):
filtered = denoise_tv_chambolle(input)
filtered = filtered.astype(np.float32)
mse = np.sum((filtered-truth)**2) / input.size
struct_sim = ssim(filtered, truth, data_range=filtered.max()-filtered.min())
return mse, struct_sim
def metric_denoise_nl_means(input, truth):
filtered = denoise_nl_means(input)
filtered = filtered.astype(np.float32)
mse = np.sum((filtered-truth)**2) / input.size
struct_sim = ssim(filtered, truth, data_range=filtered.max()-filtered.min())
return mse, struct_sim
def metric_denoise_tv_bregman(input, truth):
filtered = denoise_tv_bregman(input, weight=0.1, eps=0.0002, max_iter=200, isotropic=False)
filtered = filtered.astype(np.float32)
mse = np.sum((filtered-truth)**2) / input.size
struct_sim = ssim(filtered, truth, data_range=filtered.max()-filtered.min())
return mse, struct_sim
denoiser_nn = Denoiser(
checkpoint_loc="//flexo.ads.warwick.ac.uk/Shared41/Microscopy/Jeffrey-Ede/models/denoiser-multi-gpu-13/model/",
visible_cuda="0")
freqs = np.fft.fftfreq
def metric_denoise_nn(input, truth):
preproc_img = denoiser_nn.preprocess(input)
filtered = denoiser_nn.denoise_crop(preproc_img, preprocess=False, postprocess=False)
filtered = filtered.clip(0., 1.).reshape(512, 512)
filtered = filtered.astype(np.float32)
mse = np.sum((filtered-truth)**2) / input.size
struct_sim = ssim(filtered, truth, data_range=filtered.max()-filtered.min())
mse_surface = np.absolute(filtered-truth) #Bad name as abs error surface
fft_input = np.fft.fftshift(np.absolute(np.fft.fft2(input)))
fft_profile_orig = radial_profile(fft_input, (fft_input.shape[0]//2,fft_input.shape[1]//2))
fft_profile_orig /= np.sum(fft_profile_orig)
fft_filtered = np.fft.fftshift(np.absolute(np.fft.fft2(filtered)))
fft_profile = radial_profile(fft_filtered, (fft_filtered.shape[0]//2,fft_filtered.shape[1]//2))
fft_profile /= np.sum(fft_profile)
fft_diff = np.absolute(fft_profile-fft_profile_orig)
return mse, struct_sim, mse_surface, fft_profile_orig, fft_profile, fft_diff
#metrics = [metric_no_metric,
# metric_gaussian,
# metric_bilateral,
# metric_median,
# metric_wiener,
# metric_wavelet,
# metric_denoise_tv_chambolle,
# metric_denoise_nl_means,
# metric_denoise_tv_bregman,
# metric_denoise_nn]
metrics = [metric_denoise_nn]
nn_idx = len(metrics)-1
def get_scale():
return 25+75*np.random.rand()
#img=imread(in_dir+"train/train367.tif", mode='F')
#lq = gen_lq(img, 25)
#for _ in range(10000):
# disp((np.mean(lq)/np.mean(img))*img)
# disp(lq)
for i, subset in enumerate([subsets[2]]): #Running over test set
in_loc = in_dir+subset+"/"
files = os.listdir(in_loc)
losses = np.zeros((len(files), len(metrics), 2))
mse_error_avg = np.zeros((512,512))
fft_radial_avg_orig = np.zeros((363,))
fft_radial_avg_filtered = np.zeros((363,))
fft_diff = np.zeros((363,))
#losses = np.load(save_dir+subset+"-losses-ssim2.npy")
for j, file in enumerate(files[:20000]):
print("{} file {}".format(subset, j))
try:
img = imread(in_loc+file, mode='F')
except:
img = 0.5*np.ones((512,512))
lq = gen_lq(img, scale=get_scale())
img *= np.mean(lq)/np.mean(img)
for k, metric in enumerate(metrics):
if not k == nn_idx:
losses[j, k][0], losses[j, k][1] = metric(lq, img)
else:
losses[j, k][0], losses[j, k][1], mse_error_avg_inst, fft_profile_orig, fft_profile_filtered, fft_diff_inst = metric(lq, img)
mse_error_avg += mse_error_avg_inst
fft_radial_avg_orig += fft_profile_orig
fft_radial_avg_filtered += fft_profile_filtered
fft_diff += fft_diff_inst
print(losses[j,:])
if not j%1000:
np.save(save_dir+subset+"-losses-ssim-nn.npy", losses)
np.save(save_dir+subset+"-losses-ssim-nn_mse_avg-actually-abs.npy", mse_error_avg)
np.save(save_dir+subset+"-losses-ssim-nn_fft_avg_orig.npy", fft_radial_avg_orig)
np.save(save_dir+subset+"-losses-ssim-nn_fft_avg_filtered.npy", fft_radial_avg_filtered)
np.save(save_dir+subset+"-losses-ssim-nn_fft_diff.npy", fft_diff)
np.save(save_dir+subset+"-losses-ssim-nn.npy", losses)
np.save(save_dir+subset+"-losses-ssim-nn_mse_avg-actually-abs.npy", mse_error_avg/20000)
np.save(save_dir+subset+"-losses-ssim-nn_fft_avg_orig.npy", fft_radial_avg_orig/20000)
np.save(save_dir+subset+"-losses-ssim-nn_fft_avg_filtered.npy", fft_radial_avg_filtered/20000)
np.save(save_dir+subset+"-losses-ssim-nn_fft_diff.npy", fft_diff/20000)