-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcausal_model.py
39 lines (33 loc) · 1.38 KB
/
causal_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
def find_causal(arg_list, pipeline, sensitivity = None):
arg_pairs = []
for i in range(0, len(arg_list)-1):
pair = {}
pair['text'] = arg_list[i]
pair['text_pair'] = arg_list[i+1]
arg_pairs.append(pair)
predictions = pipeline(arg_pairs)
predicted_class = []
for pred in predictions:
pred_dic = {}
pred_dic[pred[0]['label']] = pred[0]['score']
pred_dic[pred[1]['label']] = pred[1]['score']
pred_dic[pred[2]['label']] = pred[2]['score']
if sensitivity == None:
predicted_class.append(max(pred_dic, key=pred_dic.get))
else:
if pred_dic['not causal'] < sensitivity:
pred_dic.pop('not causal')
predicted_class.append(max(pred_dic, key=pred_dic.get))
else:
predicted_class.append(max(pred_dic, key=pred_dic.get))
sent_dict = {'reason':[], 'result':[]}
for index, elem in enumerate(predicted_class):
if elem == 'reason':
sent_dict['reason'].append(index)
sent_dict['reason'].append(index+1)
elif elem == 'result':
sent_dict['result'].append(index)
sent_dict['result'].append(index+1)
sent_dict['reason'] = list(set(sent_dict['reason']))
sent_dict['result'] = list(set(sent_dict['result']))
return sent_dict