-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathyolo_realtime.py
executable file
·116 lines (97 loc) · 4.01 KB
/
yolo_realtime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import cv2
import numpy as np
import time
from audio import say
# flag if true tells position of object
# num set the max number of objects
def detect(num=100):
# Load Yolo
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
start_time = position_time = time.time()
items = []
cnt = flag = 0
obj = set()
# Loading web cam
camera = cv2.VideoCapture(0)
# global frame
while time.time() - start_time < 50:
_, img = camera.read()
# frame=img
height, width, channels = img.shape
# Detecting objects
blob = cv2.dnn.blobFromImage(
img, 0.00392, (320, 320), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# print(outs)
# Showing informations on the screen
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
# print(detection)
if confidence > 0.6:
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
frame_center_x = img.shape[1] / 2
frame_center_y = img.shape[0] / 2
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
if time.time() - position_time > 7 and flag and cnt < num and classes[class_id] not in obj:
if center_x > frame_center_x:
direction_x = "to your right"
else:
direction_x = "to your left"
if center_y < frame_center_y: # Flip the comparison for vertical direction
direction_y = "above you" # Flip the direction description
else:
direction_y = "below you" # Flip the direction description
words = f'{classes[class_id]} {direction_x} {direction_y}'
obj.add(classes[class_id])
print(words)
say(words)
cnt += 1
position_time = time.time()
# time.sleep(3)
confidences.append(float(confidence))
class_ids.append(class_id)
items.append(classes[class_id])
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
color = colors[i]
cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
cv2.putText(img, label, (x, y + 30), font, 3, color, 3)
cv2.imshow("Image", img)
flag = 1
key = cv2.waitKey(1)
if key == 27: # Press esc to break
break
final = list(set(items)) # to remove the repetative words.
print(final)
a = "person" # Cuz index of person is 0
if a in final:
# name = face.face_recog(frame)
# say("Say hello to "+name)
say("Say hello to person")
camera.release()
cv2.destroyAllWindows()
# detect()