This repository has been archived by the owner on Jun 24, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_linear.py
179 lines (133 loc) · 7.15 KB
/
main_linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import data, models_linear, utils
import argparse, os, time
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
from torch.utils.data import DistributedSampler
from torch.nn.parallel import DistributedDataParallel
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser()
parser.add_argument('--port-num', default='9999', type=str)
parser.add_argument('--world-size', default=2, type=int, help='number of gpus for ddp')
parser.add_argument('--data-dir', default='/mnt/ssd1/ImageNet', type=str)
parser.add_argument('--batch-size', default=256, type=int)
parser.add_argument('--num-workers', default=8, type=int)
parser.add_argument('--pretrained', default='./checkpoints/MoCo_ResNet50_800_0799.pth.tar', type=str)
parser.add_argument('--model-type', default='query', type=str)
parser.add_argument('--num-classes', default=1000, type=int)
parser.add_argument('--epochs', default=100, type=int)
parser.add_argument('--schedule', default=[60, 80], nargs='*', type=int)
parser.add_argument('--lr', default=30, type=float)
parser.add_argument('--momentum', default=0.9, type=float)
parser.add_argument('--weight-decay', default=0, type=float)
parser.add_argument('--save', action='store_true', help='save logs, checkpoints')
parser.add_argument('--save-name', default='ResNet50_799_q', type=str)
parser.add_argument('--save-freq', default=1, type=int)
parser.add_argument('--print-freq', default=100, type=int)
parser.add_argument('--log', default='./logs/', type=str)
parser.add_argument('--checkpoint', default='./checkpoints/', type=str)
args = parser.parse_args()
def init_process(gpu, world_size):
os.environ['MASTER_ADDR'] = '127.0.0.1'
os.environ['MASTER_PORT'] = args.port_num
torch.cuda.set_device(gpu)
dist.init_process_group('nccl', world_size=world_size, rank=gpu)
def main(gpu, world_size):
init_process(gpu, world_size)
# dataloader
train_dataset = data.FinetuneDB(os.path.join(args.data_dir, 'train'), transform=data.train_transform())
train_sampler = DistributedSampler(train_dataset, rank=gpu, num_replicas=args.world_size, shuffle=True, drop_last=True)
train_loader = torch.utils.data.DataLoader(train_dataset,
batch_size=int(args.batch_size / args.world_size),
shuffle=False,
sampler=train_sampler,
num_workers=args.num_workers,
pin_memory=True,
drop_last=True)
val_dataset = data.FinetuneDB(os.path.join(args.data_dir, 'val'), transform=data.val_transform())
val_sampler = DistributedSampler(val_dataset, rank=gpu, num_replicas=args.world_size, shuffle=False, drop_last=False)
val_loader = torch.utils.data.DataLoader(val_dataset,
batch_size=int(args.batch_size / args.world_size),
shuffle=False,
sampler=val_sampler,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False)
# model
net = models_linear.ResNet50(args.num_classes, args.pretrained, args.model_type).cuda(gpu)
net = DistributedDataParallel(net, device_ids=[gpu])
# optimizer
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
# critertion
criterion = nn.CrossEntropyLoss().cuda(gpu)
# logger
logger = utils.Logger(args)
if dist.get_rank() == 0: logger.initialize()
for epoch in range(args.epochs):
# train
net.train()
if dist.get_rank() == 0: print('Epoch {} Train Started...'.format(epoch))
train_loss = []
train_start = time.time()
lr = utils.step_scheduler(optimizer, epoch, args)
for i, (imgs, labels) in enumerate(train_loader):
imgs, labels = imgs.cuda(gpu), labels.cuda(gpu)
output = net(imgs)
loss = criterion(output, labels)
optimizer.zero_grad(); loss.backward(); optimizer.step()
dist.barrier()
dist.all_reduce(loss, op=dist.ReduceOp.SUM)
if dist.get_rank() == 0: train_loss.append(loss.item() / args.world_size)
if (i % args.print_freq == 0) and (dist.get_rank() == 0):
print('Iteration : {:0>5} LR : {:.6f} Train Loss : {:.6f}'.format(i, lr, train_loss[-1]))
train_time = time.strftime('%H:%M:%S', time.gmtime(time.time() - train_start))
# val
net.eval()
if dist.get_rank() == 0: print('Epoch {} Val Started...'.format(epoch))
val_start = time.time()
with torch.no_grad():
val_loss, correct = [], 0
for imgs, labels in val_loader:
imgs, labels = imgs.cuda(gpu), labels.cuda(gpu)
output = net(imgs)
loss = criterion(output, labels)
predict = torch.argmax(output, 1)
c = (predict == labels).sum()
dist.barrier()
dist.all_reduce(loss, op=dist.ReduceOp.SUM)
dist.all_reduce(c, op=dist.ReduceOp.SUM)
if dist.get_rank() == 0:
correct += c.item()
val_loss.append(loss.item() / args.world_size)
val_time = time.strftime('%H:%M:%S', time.gmtime(time.time() - val_start))
# print results
if dist.get_rank() == 0:
train_loss = sum(train_loss) / len(train_loss)
val_loss = sum(val_loss) / len(val_loss)
acc = 100 * correct / len(val_dataset)
print(); print('-' * 50)
print('Epoch : {}'.format(epoch))
print('Acc : {:.2f}'.format(acc))
print('Train Time : {} Val Time : {}'.format(train_time, val_time))
print('Train Loss : {:.6f} Val Loss : {:.6f}'.format(train_loss, val_loss))
print('-' * 50); print()
# save checkpoint
if args.save and (epoch % args.save_freq == 0):
checkpoint = '{}_{:0>4}.pth'.format(args.save_name, epoch)
torch.save(net.module.state_dict(), os.path.join(args.checkpoint, checkpoint))
# update log
logger.update({'epoch' : epoch,
'lr' : lr,
'acc' : acc,
'train_time' : train_time,
'train_loss' : train_loss,
'val_time' : val_time,
'val_loss' : val_loss,})
def run(world_size):
torch.multiprocessing.spawn(main, nprocs=world_size, args=(world_size,))
dist.destroy_process_group()
if __name__ == '__main__':
print('Available GPUs : {} Use GPUs : {}'.format(torch.cuda.device_count(), args.world_size))
assert args.world_size <= torch.cuda.device_count()
run(args.world_size)