-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfield_simplify_eq.v
90 lines (75 loc) · 3.99 KB
/
field_simplify_eq.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
(** Lifted from https://coq.inria.fr/bugs/show_bug.cgi?id=4810, if the type of the field is a projection from a record, then the performance of [field_simplify_eq] is linear in the *number of record fields of that record*. This number is completely irrelevant to the intended behavior of [field_simplify_eq]. Fixing this would remove the need for the variant of [field_simplify_eq] mentioned in bug #4809. (The constant coefficient in trunk is around 1.3 s rather than 5 s, which is better, but still entirely unacceptable, given that we need records with 11 fields.) *)
Axiom proof_admitted : False.
Tactic Notation "admit" := abstract case proof_admitted.
Require Coq.nsatz.Nsatz.
Import Coq.ZArith.BinInt.
Import Coq.ZArith.Znumtheory.
Definition F (modulus : BinInt.Z) : Set.
exact { z : BinInt.Z | z = z mod modulus }.
Defined.
Export Coq.setoid_ring.Field_tac.
Export Coq.ZArith.ZArith.
Axiom pow : forall {m}, F m -> BinNums.N -> F m.
Axiom add : forall {p}, F p -> F p -> F p.
Axiom mul : forall {p}, F p -> F p -> F p.
Axiom sub : forall {p}, F p -> F p -> F p.
Axiom div : forall {p}, F p -> F p -> F p.
Axiom opp : forall {p}, F p -> F p.
Axiom inv : forall {p}, F p -> F p.
Axiom ZToField : forall {p}, BinInt.Z -> F p.
Axiom FieldTheory : forall p, @field_theory (F p) (ZToField 0%Z) (ZToField 1%Z) add mul sub opp div inv eq.
Module Type params.
Parameter TwistedEdwardsParams : Set.
Parameter q : forall {_ : TwistedEdwardsParams}, BinInt.Z.
End params.
Module gen (Import P : params).
Existing Class TwistedEdwardsParams.
Context {prm:TwistedEdwardsParams}.
Add Field Ffield_notConstant : (FieldTheory q).
Notation qq := (@q prm).
Infix "*" := (@mul qq).
Infix "+" := (@add qq).
Infix "-" := (@sub qq).
Infix "/" := (@div qq).
Notation "1" := (@ZToField qq 1%Z).
Infix "^" := (@pow qq).
Axiom d : F qq.
Axiom a : F qq.
Definition GT := forall xA yA : F qq,
a * xA ^ 2%N + yA ^ 2%N = 1 + d * xA ^ 2%N * yA ^ 2%N ->
forall xB yB : F qq,
a * xB ^ 2%N + yB ^ 2%N = 1 + d * xB ^ 2%N * yB ^ 2%N ->
forall xC yC : F qq,
a * xC ^ 2%N + yC ^ 2%N = 1 + d * xC ^ 2%N * yC ^ 2%N ->
(xA * ((yB * yC - a * xB * xC) / (1 - d * xB * xC * yB * yC)) + yA * ((xB * yC + yB * xC) / (1 + d * xB * xC * yB * yC))) /
(1 + d * xA * ((xB * yC + yB * xC) / (1 + d * xB * xC * yB * yC)) * yA * ((yB * yC - a * xB * xC) / (1 - d * xB * xC * yB * yC))) =
((xA * yB + yA * xB) / (1 + d * xA * xB * yA * yB) * yC + (yA * yB - a * xA * xB) / (1 - d * xA * xB * yA * yB) * xC) /
(1 + d * ((xA * yB + yA * xB) / (1 + d * xA * xB * yA * yB)) * xC * ((yA * yB - a * xA * xB) / (1 - d * xA * xB * yA * yB)) * yC).
Ltac t0 := unfold GT; intros.
End gen.
Record TwistedEdwardsParams0 := { q0 : BinInt.Z }.
Module P0 <: params. Definition TwistedEdwardsParams := TwistedEdwardsParams0. Definition q := @q0. End P0.
Module Import Show0 := gen P0.
Goal GT. t0. Time field_simplify_eq. (* Finished transaction in 0. secs (0.324u,0.004s) *) Admitted.
Record TwistedEdwardsParams1 := { q1 : BinInt.Z ; a1 : F q1 }.
Module P1 <: params. Definition TwistedEdwardsParams := TwistedEdwardsParams1. Definition q := @q1. End P1.
Module Import Show1 := gen P1.
Goal GT. t0. Time field_simplify_eq. (* Finished transaction in 5. secs (4.76u,0.028s) *) Admitted.
Record TwistedEdwardsParams2 := { q2 : BinInt.Z ; a2 : F q2 ; b2 : F q2 }.
Module P2 <: params. Definition TwistedEdwardsParams := TwistedEdwardsParams2. Definition q := @q2. End P2.
Module Import Show2 := gen P2.
Goal GT. t0. Time field_simplify_eq. (* Finished transaction in 11. secs (10.12u,0.096s) *) Admitted.
(* And our actual example *)
Class TwistedEdwardsParams7 := {
q : BinInt.Z;
a : F q;
d : F q;
prime_q : Znumtheory.prime q;
two_lt_q : BinInt.Z.lt 2 q;
nonzero_a : a <> (ZToField 0);
square_a : exists sqrt_a, pow sqrt_a 2 = a;
nonsquare_d : forall x, pow x 2 <> d
}.
Module P7 <: params. Definition TwistedEdwardsParams := TwistedEdwardsParams7. Definition q := @q. End P7.
Module Import Show7 := gen P7.
Goal GT. t0. Time field_simplify_eq. Admitted.